Structure-activity studies and analgesic efficacy of N-(3-pyridinyl)-bridged bicyclic diamines, exceptionally potent agonists at nicotinic acetylcholine receptors.

Article Details

Citation

Bunnelle WH, Daanen JF, Ryther KB, Schrimpf MR, Dart MJ, Gelain A, Meyer MD, Frost JM, Anderson DJ, Buckley M, Curzon P, Cao YJ, Puttfarcken P, Searle X, Ji J, Putman CB, Surowy C, Toma L, Barlocco D

Structure-activity studies and analgesic efficacy of N-(3-pyridinyl)-bridged bicyclic diamines, exceptionally potent agonists at nicotinic acetylcholine receptors.

J Med Chem. 2007 Jul 26;50(15):3627-44. Epub 2007 Jun 22.

PubMed ID
17585748 [ View in PubMed
]
Abstract

A series of exceptionally potent agonists at neuronal nicotinic acetylcholine receptors (nAChRs) has been investigated. Several N-(3-pyridinyl) derivatives of bridged bicyclic diamines exhibit double-digit-picomolar binding affinities for the alpha 4 beta 2 subtype, placing them with epibatidine among the most potent nAChR ligands described to date. Structure-activity studies have revealed that substitutions, particularly hydrophilic groups in the pyridine 5-position, differentially modulate the agonist activity at ganglionic vs central nAChR subtypes, so that improved subtype selectivity can be demonstrated in vitro. Analgesic efficacy has been achieved across a broad range of pain states, including rodent models of acute thermal nociception, persistent pain, and neuropathic allodynia. Unfortunately, the hydrophilic pyridine substituents that were shown to enhance agonist selectivity for central nAChRs in vitro tend to limit CNS penetration in vivo, so that analgesic efficacy with an improved therapeutic window was not realized with those compounds.

DrugBank Data that Cites this Article

Binding Properties
DrugTargetPropertyMeasurementpHTemperature (°C)
NicotineNeuronal acetylcholine receptor subunit beta-2EC 50 (nM)9400N/AN/ADetails