You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on DrugBank.
Identification
NameChlorprothixene
Accession NumberDB01239  (APRD00718)
TypeSmall Molecule
GroupsApproved, Withdrawn
Description

Chlorprothixene is a typical antipsychotic drug of the thioxanthene (tricyclic) class. Chlorprothixene exerts strong blocking effects by blocking the 5-HT2 D1, D2, D3, histamine H1, muscarinic and alpha1 adrenergic receptors.

Structure
Thumb
Synonyms
SynonymLanguageCode
Alpha-ChlorprothixeneNot AvailableNot Available
ChlorprothixenNot AvailableNot Available
ChlorprothixineNot AvailableNot Available
ChlorprotixenNot AvailableNot Available
ChlorprotixeneNot AvailableNot Available
ChlorprotixineNot AvailableNot Available
ChlothixenNot AvailableNot Available
SID11110647Not AvailableNot Available
SID144203583Not AvailableNot Available
SID4253130Not AvailableNot Available
SID50108484Not AvailableNot Available
Prescription ProductsNot Available
Generic Prescription ProductsNot Available
Over the Counter ProductsNot Available
International Brands
NameCompany
ClothixenYoshitomi
CloxanOrion
TaractanRoche
Brand mixturesNot Available
SaltsNot Available
Categories
CAS number113-59-7
WeightAverage: 315.86
Monoisotopic: 315.084847978
Chemical FormulaC18H18ClNS
InChI KeyWSPOMRSOLSGNFJ-VGOFMYFVSA-N
InChI
InChI=1S/C18H18ClNS/c1-20(2)11-5-7-14-15-6-3-4-8-17(15)21-18-10-9-13(19)12-16(14)18/h3-4,6-10,12H,5,11H2,1-2H3/b14-7+
IUPAC Name
[3-(2-chloro-9H-thioxanthen-9-ylidene)propyl]dimethylamine
SMILES
[H]C(CCN(C)C)=C1C2=CC(Cl)=CC=C2SC2=C1C=CC=C2
Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as thioxanthenes. These are organic polycyclic compounds containing a thioxanthene moiety, which is an aromatic tricycle derived from xanthene by replacing the oxygen atom with a sulfur atom.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassBenzothiopyrans
Sub Class1-benzothiopyrans
Direct ParentThioxanthenes
Alternative Parents
Substituents
  • Thioxanthene
  • Diarylthioether
  • Chlorobenzene
  • Benzenoid
  • Aryl halide
  • Aryl chloride
  • Tertiary aliphatic amine
  • Tertiary amine
  • Thioether
  • Hydrocarbon derivative
  • Organonitrogen compound
  • Organochloride
  • Organohalogen compound
  • Amine
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Pharmacology
IndicationFor treatment of psychotic disorders (e.g. schizophrenia) and of acute mania occuring as part of bipolar disorders.
PharmacodynamicsChlorprothixene is a typical antipsychotic drug of the thioxanthine class. It has a low antipsychotic potency (half to 2/3 of chlorpromazine). An intrinsic antidepressant effect of chlorprothixene has been discussed, but not proven yet. Likewise, it is unclear, if chlorprothixene has genuine analgesic effects. An antiemetic effect, as with most antipsychotics, exists. It is used in the treatment of nervous, mental, and emotional conditions. Improvement in such conditions is thought to result from the effect of the medicine on nerve pathways in specific areas of the brain. Chlorprothixene has a strong sedative activity with a high incidence of anticholinergic side-effects. Chlorprothixene is structurally related to chlorpromazine, with which it shares in principal all side effects. Allergic side-effects and liver damage seem to appear with an appreciable lower frequency.
Mechanism of actionChlorprothixene blocks postsynaptic mesolimbic dopaminergic D1 and D2 receptors in the brain; depresses the release of hypothalamic and hypophyseal hormones and is believed to depress the reticular activating system thus affecting basal metabolism, body temperature, wakefulness, vasomotor tone, and emesis.
AbsorptionIncomplete bioavailability.
Volume of distributionNot Available
Protein bindingNot Available
Metabolism

Hepatic

Route of eliminationNot Available
Half life8 to 12 hours
ClearanceNot Available
ToxicitySymptoms of overdose include difficulty in breathing (severe), dizziness (severe), drowsiness (severe), muscle trembling, jerking, stiffness, or uncontrolled movements (severe), small pupils, unusual excitement, and unusual tiredness or weakness (severe).
Affected organisms
  • Humans and other mammals
PathwaysNot Available
SNP Mediated EffectsNot Available
SNP Mediated Adverse Drug ReactionsNot Available
ADMET
Predicted ADMET features
PropertyValueProbability
Human Intestinal Absorption+0.9899
Blood Brain Barrier+0.95
Caco-2 permeable+0.7404
P-glycoprotein substrateSubstrate0.8042
P-glycoprotein inhibitor IInhibitor0.8407
P-glycoprotein inhibitor IIInhibitor0.8884
Renal organic cation transporterInhibitor0.72
CYP450 2C9 substrateNon-substrate0.7199
CYP450 2D6 substrateSubstrate0.6845
CYP450 3A4 substrateSubstrate0.7096
CYP450 1A2 substrateInhibitor0.9106
CYP450 2C9 substrateNon-inhibitor0.9071
CYP450 2D6 substrateInhibitor0.8931
CYP450 2C19 substrateNon-inhibitor0.9026
CYP450 3A4 substrateNon-inhibitor0.8308
CYP450 inhibitory promiscuityHigh CYP Inhibitory Promiscuity0.768
Ames testNon AMES toxic0.7084
CarcinogenicityNon-carcinogens0.8714
BiodegradationNot ready biodegradable0.9838
Rat acute toxicity3.1665 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.8117
hERG inhibition (predictor II)Inhibitor0.7373
Pharmacoeconomics
ManufacturersNot Available
PackagersNot Available
Dosage formsNot Available
PricesNot Available
PatentsNot Available
Properties
StateSolid
Experimental Properties
PropertyValueSource
melting point153-154Sprague, J.M. and Engelhardt, E.L.; US. Patent 2,951,082; August 30, 1960; assigned to Merck & Co., Inc. Schlapfer, R. and Spiegelberg, H.; US. Patent 3,115,502; December 24,1963; assigned to Hoffmann-LaRoche Inc.
water solubility0.295 mg/LNot Available
logP5.18HANSCH,C ET AL. (1995)
Predicted Properties
PropertyValueSource
Water Solubility0.000366 mg/mLALOGPS
logP5.42ALOGPS
logP5.07ChemAxon
logS-5.9ALOGPS
pKa (Strongest Basic)9.76ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area3.24 Å2ChemAxon
Rotatable Bond Count3ChemAxon
Refractivity104.66 m3·mol-1ChemAxon
Polarizability35.85 Å3ChemAxon
Number of Rings3ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Mass Spec (NIST)Download (8.22 KB)
Spectra
References
Synthesis Reference

Sprague, J.M. and Engelhardt, E.L.; US. Patent 2,951,082; August 30, 1960; assigned to
Merck & Co., Inc.
Schlapfer, R. and Spiegelberg, H.; US. Patent 3,115,502; December 24,1963; assigned to Hoffmann-LaRoche Inc.

US3046283
General ReferenceNot Available
External Links
ATC CodesN05AF03
AHFS CodesNot Available
PDB EntriesNot Available
FDA labelNot Available
MSDSDownload (63.3 KB)
Interactions
Drug Interactions
Drug
AlmotriptanSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
AmitriptylineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
AmoxapineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
AmphetamineMay diminish the stimulatory effect of Amphetamines.
BenzphetamineMay diminish the stimulatory effect of Amphetamines.
BuspironeSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
CabergolineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
CitalopramSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
ClomipramineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
CyclobenzaprineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
DesipramineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
DesvenlafaxineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
DextroamphetamineMay diminish the stimulatory effect of Amphetamines.
DextromethorphanSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
DihydroergotamineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
DonepezilAcetylcholinesterase Inhibitors (Central) may enhance the neurotoxic (central) effect of Antipsychotic Agents. Severe extrapyramidal symptoms have occurred in some patients.
DuloxetineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
EletriptanSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
Ergoloid mesylateSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
ErgonovineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
ErgotamineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
EscitalopramSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
FentanylSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
FluoxetineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
FluvoxamineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
FrovatriptanSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
GalantamineAcetylcholinesterase Inhibitors (Central) may enhance the neurotoxic (central) effect of Antipsychotic Agents. Severe extrapyramidal symptoms have occurred in some patients.
ImipramineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
IsocarboxazidSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
LevomilnacipranSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
LinezolidSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
LisdexamfetamineMay diminish the stimulatory effect of Amphetamines.
LithiumLithium may enhance the neurotoxic effect of Antipsychotic Agents. Lithium may decrease the serum concentration of Antipsychotic Agents. Specifically noted with chlorpromazine.
LorcaserinSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
MaprotilineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
MethadoneSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
MethamphetamineMay diminish the stimulatory effect of Amphetamines.
MethylergometrineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
MethylphenidateMay enhance the adverse/toxic effect of Methylphenidate. Methylphenidate may enhance the adverse/toxic effect of Antipsychotic Agents.
MetoclopramideMetoclopramide may enhance the adverse/toxic effect of Antipsychotic Agents.
MetyrosineMetyrosine may enhance the adverse/toxic effect of Antipsychotic Agents.
MilnacipranSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
MoclobemideSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
NaratriptanSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
NefazodoneSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
NortriptylineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
ParoxetineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
PethidineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
PhendimetrazineMay diminish the stimulatory effect of Amphetamines.
PhenelzineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
PhentermineMay diminish the stimulatory effect of Amphetamines.
ProcarbazineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
PromethazineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
ProtriptylineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
RasagilineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
RivastigmineAcetylcholinesterase Inhibitors (Central) may enhance the neurotoxic (central) effect of Antipsychotic Agents. Severe extrapyramidal symptoms have occurred in some patients.
RizatriptanSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
SelegilineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
SertralineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
SumatriptanSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
Tedizolid PhosphateSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
TetrabenazineTetrabenazine may enhance the adverse/toxic effect of Antipsychotic Agents.
TramadolSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
TranylcypromineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
TrimipramineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
VenlafaxineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
VilazodoneSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
ZolmitriptanSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
Food Interactions
  • Avoid alcohol.
  • Take with food to reduce irritation.

Targets

1. D(2) dopamine receptor

Kind: protein

Organism: Human

Pharmacological action: yes

Actions: antagonist

Components

Name UniProt ID Details
D(2) dopamine receptor P14416 Details

References:

  1. Froimowitz M, Cody V: Biologically active conformers of phenothiazines and thioxanthenes. Further evidence for a ligand model of dopamine D2 receptor antagonists. J Med Chem. 1993 Jul 23;36(15):2219-27. Pubmed
  2. Fux M, Belmaker RH: A controlled comparative study of chlorprothixene vs. haloperidol in chronic schizophrenia. Isr J Psychiatry Relat Sci. 1991;28(1):37-40. Pubmed
  3. von Coburg Y, Kottke T, Weizel L, Ligneau X, Stark H: Potential utility of histamine H3 receptor antagonist pharmacophore in antipsychotics. Bioorg Med Chem Lett. 2009 Jan 15;19(2):538-42. Epub 2008 Sep 7. Pubmed
  4. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. Pubmed

2. D(1A) dopamine receptor

Kind: protein

Organism: Human

Pharmacological action: yes

Actions: antagonist

Components

Name UniProt ID Details
D(1A) dopamine receptor P21728 Details

References:

  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. Pubmed
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. Pubmed
  3. Fux M, Belmaker RH: A controlled comparative study of chlorprothixene vs. haloperidol in chronic schizophrenia. Isr J Psychiatry Relat Sci. 1991;28(1):37-40. Pubmed

3. D(3) dopamine receptor

Kind: protein

Organism: Human

Pharmacological action: yes

Actions: antagonist

Components

Name UniProt ID Details
D(3) dopamine receptor P35462 Details

References:

  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. Pubmed
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. Pubmed
  3. Fux M, Belmaker RH: A controlled comparative study of chlorprothixene vs. haloperidol in chronic schizophrenia. Isr J Psychiatry Relat Sci. 1991;28(1):37-40. Pubmed

4. 5-hydroxytryptamine receptor 2A

Kind: protein

Organism: Human

Pharmacological action: yes

Actions: antagonist

Components

Name UniProt ID Details
5-hydroxytryptamine receptor 2A P28223 Details

References:

  1. Antkiewicz-Michaluk L: The influence of chronic treatment with antidepressant neuroleptics on the central serotonin system. Pol J Pharmacol Pharm. 1986 Jul-Aug;38(4):359-70. Pubmed
  2. Wander TJ, Nelson A, Okazaki H, Richelson E: Antagonism by neuroleptics of serotonin 5-HT1A and 5-HT2 receptors of normal human brain in vitro. Eur J Pharmacol. 1987 Nov 10;143(2):279-82. Pubmed

5. 5-hydroxytryptamine receptor 2B

Kind: protein

Organism: Human

Pharmacological action: yes

Actions: antagonist

Components

Name UniProt ID Details
5-hydroxytryptamine receptor 2B P41595 Details

References:

  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. Pubmed
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. Pubmed

6. 5-hydroxytryptamine receptor 2C

Kind: protein

Organism: Human

Pharmacological action: yes

Actions: antagonist

Components

Name UniProt ID Details
5-hydroxytryptamine receptor 2C P28335 Details

References:

  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. Pubmed
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. Pubmed

7. Histamine H1 receptor

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: antagonist

Components

Name UniProt ID Details
Histamine H1 receptor P35367 Details

References:

  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. Pubmed
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. Pubmed

8. Muscarinic acetylcholine receptor M1

Kind: protein

Organism: Human

Pharmacological action: no

Actions: antagonist

Components

Name UniProt ID Details
Muscarinic acetylcholine receptor M1 P11229 Details

References:

  1. Cusack B, Nelson A, Richelson E: Binding of antidepressants to human brain receptors: focus on newer generation compounds. Psychopharmacology (Berl). 1994 May;114(4):559-65. Pubmed

9. Muscarinic acetylcholine receptor M2

Kind: protein

Organism: Human

Pharmacological action: no

Actions: antagonist

Components

Name UniProt ID Details
Muscarinic acetylcholine receptor M2 P08172 Details

References:

  1. Cusack B, Nelson A, Richelson E: Binding of antidepressants to human brain receptors: focus on newer generation compounds. Psychopharmacology (Berl). 1994 May;114(4):559-65. Pubmed

10. Muscarinic acetylcholine receptor M3

Kind: protein

Organism: Human

Pharmacological action: no

Actions: antagonist

Components

Name UniProt ID Details
Muscarinic acetylcholine receptor M3 P20309 Details

References:

  1. Cusack B, Nelson A, Richelson E: Binding of antidepressants to human brain receptors: focus on newer generation compounds. Psychopharmacology (Berl). 1994 May;114(4):559-65. Pubmed

11. Muscarinic acetylcholine receptor M4

Kind: protein

Organism: Human

Pharmacological action: no

Actions: antagonist

Components

Name UniProt ID Details
Muscarinic acetylcholine receptor M4 P08173 Details

References:

  1. Cusack B, Nelson A, Richelson E: Binding of antidepressants to human brain receptors: focus on newer generation compounds. Psychopharmacology (Berl). 1994 May;114(4):559-65. Pubmed

12. Muscarinic acetylcholine receptor M5

Kind: protein

Organism: Human

Pharmacological action: no

Actions: antagonist

Components

Name UniProt ID Details
Muscarinic acetylcholine receptor M5 P08912 Details

References:

  1. Cusack B, Nelson A, Richelson E: Binding of antidepressants to human brain receptors: focus on newer generation compounds. Psychopharmacology (Berl). 1994 May;114(4):559-65. Pubmed

Transporters

1. Multidrug resistance protein 1

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Multidrug resistance protein 1 P08183 Details

References:

  1. Mahar Doan KM, Humphreys JE, Webster LO, Wring SA, Shampine LJ, Serabjit-Singh CJ, Adkison KK, Polli JW: Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther. 2002 Dec;303(3):1029-37. Pubmed

Comments
comments powered by Disqus
Drug created on June 13, 2005 07:24 / Updated on April 04, 2014 11:55