Heptabarbital

Identification

Generic Name
Heptabarbital
DrugBank Accession Number
DB01354
Background

Heptabarbital is an intermediate or short term barbiturate used mainly for sedation and hypnosis.

Type
Small Molecule
Groups
Experimental
Structure
Weight
Average: 250.2936
Monoisotopic: 250.131742452
Chemical Formula
C13H18N2O3
Synonyms
  • Heptabarb
  • Heptabarbe
  • Heptabarbital
  • Heptabarbitone
  • Heptabarbo
  • Heptabarbum
External IDs
  • G 475

Pharmacology

Indication

Used mainly for sedation and hypnosis.

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

Not Available

Mechanism of action

Heptabarbital (like all barbiturates) works by binding to the GABAA receptor at either the alpha or the beta sub unit. These are binding sites that are distinct from GABA itself and also distinct from the benzodiazepine binding site. Like benzodiazepines, barbiturates potentiate the effect of GABA at this receptor. This GABAA receptor binding decreases input resistance, depresses burst and tonic firing, especially in ventrobasal and intralaminar neurons, while at the same time increasing burst duration and mean conductance at individual chloride channels; this increases both the amplitude and decay time of inhibitory postsynaptic currents. In addition to this GABA-ergic effect, barbiturates also block the AMPA receptor, a subtype of glutamate receptor. Glutamate is the principal excitatory neurotransmitter in the mammalian CNS. Heptabarbital also appears to bind neuronal nicotinic acetylcholine receptors.

TargetActionsOrganism
AGamma-aminobutyric acid receptor subunit alpha-1
potentiator
Humans
AGamma-aminobutyric acid receptor subunit alpha-2
potentiator
Humans
AGamma-aminobutyric acid receptor subunit alpha-3
potentiator
Humans
AGamma-aminobutyric acid receptor subunit alpha-4
potentiator
Humans
AGamma-aminobutyric acid receptor subunit alpha-5
potentiator
Humans
AGamma-aminobutyric acid receptor subunit alpha-6
potentiator
Humans
UNeuronal acetylcholine receptor subunit alpha-4
antagonist
Humans
UNeuronal acetylcholine receptor subunit alpha-7
antagonist
Humans
UGlutamate receptor 2
antagonist
Humans
UGlutamate receptor ionotropic, kainate 2
antagonist
Humans
Absorption

Not Available

Volume of distribution

Not Available

Protein binding

Not Available

Metabolism

Hepatic.

Route of elimination

Not Available

Half-life

Not Available

Clearance

Not Available

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

Symptoms of an overdose typically include sluggishness, incoordination, difficulty in thinking, slowness of speech, faulty judgment, drowsiness or coma, shallow breathing, staggering, and in severe cases coma and death.

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
1,2-BenzodiazepineThe risk or severity of CNS depression can be increased when Heptabarbital is combined with 1,2-Benzodiazepine.
AcetazolamideThe risk or severity of CNS depression can be increased when Acetazolamide is combined with Heptabarbital.
AcetophenazineThe risk or severity of CNS depression can be increased when Acetophenazine is combined with Heptabarbital.
AclidiniumThe risk or severity of adverse effects can be increased when Heptabarbital is combined with Aclidinium.
AgomelatineThe risk or severity of CNS depression can be increased when Heptabarbital is combined with Agomelatine.
Food Interactions
Not Available

Products

Drug product information from 10+ global regions
Our datasets provide approved product information including:
dosage, form, labeller, route of administration, and marketing period.
Access now
Access drug product information from over 10 global regions.
Access now
International/Other Brands
Medomin (Geigy) / Medomine (Ciba)

Categories

ATC Codes
N05CA11 — Heptabarbital
Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as barbituric acid derivatives. These are compounds containing a perhydropyrimidine ring substituted at C-2, -4 and -6 by oxo groups.
Kingdom
Organic compounds
Super Class
Organoheterocyclic compounds
Class
Diazines
Sub Class
Pyrimidines and pyrimidine derivatives
Direct Parent
Barbituric acid derivatives
Alternative Parents
N-acyl ureas / Diazinanes / Dicarboximides / Azacyclic compounds / Organopnictogen compounds / Organonitrogen compounds / Organic oxides / Hydrocarbon derivatives / Carbonyl compounds
Substituents
1,3-diazinane / Aliphatic heteromonocyclic compound / Azacycle / Barbiturate / Carbonic acid derivative / Carbonyl group / Carboxylic acid derivative / Dicarboximide / Hydrocarbon derivative / N-acyl urea
Molecular Framework
Aliphatic heteromonocyclic compounds
External Descriptors
barbiturates (CHEBI:81297)
Affected organisms
  • Humans and other mammals

Chemical Identifiers

UNII
V10R70ML23
CAS number
509-86-4
InChI Key
PAZQYDJGLKSCSI-UHFFFAOYSA-N
InChI
InChI=1S/C13H18N2O3/c1-2-13(9-7-5-3-4-6-8-9)10(16)14-12(18)15-11(13)17/h7H,2-6,8H2,1H3,(H2,14,15,16,17,18)
IUPAC Name
5-(cyclohept-1-en-1-yl)-5-ethyl-1,3-diazinane-2,4,6-trione
SMILES
CCC1(C(=O)NC(=O)NC1=O)C1=CCCCCC1

References

Synthesis Reference

U.S. Patent 2,501,551.

General References
Not Available
Human Metabolome Database
HMDB0015443
KEGG Compound
C17725
PubChem Compound
10518
PubChem Substance
46508321
ChemSpider
10081
ChEBI
81297
ChEMBL
CHEMBL468837
ZINC
ZINC000005651594
Therapeutic Targets Database
DAP001032
PharmGKB
PA164783812
Wikipedia
Heptabarbital

Clinical Trials

Clinical Trials
PhaseStatusPurposeConditionsCount

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage Forms
Not Available
Prices
Not Available
Patents
Not Available

Properties

State
Solid
Experimental Properties
PropertyValueSource
melting point (°C)174U.S. Patent 2,501,551.
water solubility250 mg/L (at 25 °C)YALKOWSKY,SH & DANNENFELSER,RM (1992)
logP2.03HANSCH,C ET AL. (1995)
Predicted Properties
PropertyValueSource
Water Solubility0.324 mg/mLALOGPS
logP2.41ALOGPS
logP1.91Chemaxon
logS-2.9ALOGPS
pKa (Strongest Acidic)7.14Chemaxon
Physiological Charge-1Chemaxon
Hydrogen Acceptor Count3Chemaxon
Hydrogen Donor Count2Chemaxon
Polar Surface Area75.27 Å2Chemaxon
Rotatable Bond Count2Chemaxon
Refractivity66.25 m3·mol-1Chemaxon
Polarizability25.88 Å3Chemaxon
Number of Rings2Chemaxon
Bioavailability1Chemaxon
Rule of FiveYesChemaxon
Ghose FilterYesChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleNoChemaxon
Predicted ADMET Features
PropertyValueProbability
Human Intestinal Absorption+0.9655
Blood Brain Barrier+0.9387
Caco-2 permeable-0.5831
P-glycoprotein substrateSubstrate0.6344
P-glycoprotein inhibitor INon-inhibitor0.5941
P-glycoprotein inhibitor IINon-inhibitor0.9689
Renal organic cation transporterNon-inhibitor0.8902
CYP450 2C9 substrateNon-substrate0.7692
CYP450 2D6 substrateNon-substrate0.8793
CYP450 3A4 substrateNon-substrate0.6914
CYP450 1A2 substrateNon-inhibitor0.7892
CYP450 2C9 inhibitorNon-inhibitor0.7694
CYP450 2D6 inhibitorNon-inhibitor0.9057
CYP450 2C19 inhibitorNon-inhibitor0.7389
CYP450 3A4 inhibitorNon-inhibitor0.9666
CYP450 inhibitory promiscuityLow CYP Inhibitory Promiscuity0.8083
Ames testAMES toxic0.5298
CarcinogenicityNon-carcinogens0.8893
BiodegradationNot ready biodegradable0.9686
Rat acute toxicity1.7309 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.9588
hERG inhibition (predictor II)Non-inhibitor0.8583
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397)

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted GC-MS Spectrum - GC-MSPredicted GC-MSsplash10-05fr-4490000000-f676a100f3d6debe336f
GC-MS Spectrum - CI-BGC-MSsplash10-0udi-0090000000-65df1d705dbf292d1920
GC-MS Spectrum - EI-BGC-MSsplash10-00di-7490000000-252904343000182d024d
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-0udi-0490000000-68092cf8399a8030c13e
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-054t-0790000000-ae8db0ec4fcb7a20fe11
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-052r-3930000000-451ccfa0db3aad2e0a9a
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-0006-9100000000-c58c351f3d48e4a35369
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-0hft-5970000000-62715c09fc7ce6299404
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-0006-9410000000-b5b520571017335d9e94
Predicted 1H NMR Spectrum1D NMRNot Applicable
Predicted 13C NMR Spectrum1D NMRNot Applicable
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (Å2)Source typeSource
[M-H]-163.892254
predicted
DarkChem Lite v0.1.0
[M-H]-164.329154
predicted
DarkChem Lite v0.1.0
[M-H]-165.95161
predicted
DeepCCS 1.0 (2019)
[M+H]+164.109654
predicted
DarkChem Lite v0.1.0
[M+H]+164.691154
predicted
DarkChem Lite v0.1.0
[M+H]+168.30962
predicted
DeepCCS 1.0 (2019)
[M+Na]+164.275854
predicted
DarkChem Lite v0.1.0
[M+Na]+164.648954
predicted
DarkChem Lite v0.1.0
[M+Na]+174.40276
predicted
DeepCCS 1.0 (2019)

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Potentiator
General Function
Inhibitory extracellular ligand-gated ion channel activity
Specific Function
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine...
Gene Name
GABRA1
Uniprot ID
P14867
Uniprot Name
Gamma-aminobutyric acid receptor subunit alpha-1
Molecular Weight
51801.395 Da
References
  1. Whiting PJ: The GABAA receptor gene family: new opportunities for drug development. Curr Opin Drug Discov Devel. 2003 Sep;6(5):648-57. [Article]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
  3. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  4. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]
  5. Goodman, Louis Sanford;Brunton, Laurence L.;Chabner, Bruce;Knollman, Bjorn (2011). The Pharmacological Basis of Therapeutics (12th ed.). McGraw-Hill Professional Publishing. [ISBN:978-0-07-162442-8]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Potentiator
General Function
Inhibitory extracellular ligand-gated ion channel activity
Specific Function
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name
GABRA2
Uniprot ID
P47869
Uniprot Name
Gamma-aminobutyric acid receptor subunit alpha-2
Molecular Weight
51325.85 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Potentiator
General Function
Inhibitory extracellular ligand-gated ion channel activity
Specific Function
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name
GABRA3
Uniprot ID
P34903
Uniprot Name
Gamma-aminobutyric acid receptor subunit alpha-3
Molecular Weight
55164.055 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Potentiator
General Function
Inhibitory extracellular ligand-gated ion channel activity
Specific Function
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name
GABRA4
Uniprot ID
P48169
Uniprot Name
Gamma-aminobutyric acid receptor subunit alpha-4
Molecular Weight
61622.645 Da
References
  1. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Potentiator
General Function
Transporter activity
Specific Function
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name
GABRA5
Uniprot ID
P31644
Uniprot Name
Gamma-aminobutyric acid receptor subunit alpha-5
Molecular Weight
52145.645 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Potentiator
General Function
Inhibitory extracellular ligand-gated ion channel activity
Specific Function
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name
GABRA6
Uniprot ID
Q16445
Uniprot Name
Gamma-aminobutyric acid receptor subunit alpha-6
Molecular Weight
51023.69 Da
References
  1. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
  2. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Antagonist
General Function
Ligand-gated ion channel activity
Specific Function
After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeabl...
Gene Name
CHRNA4
Uniprot ID
P43681
Uniprot Name
Neuronal acetylcholine receptor subunit alpha-4
Molecular Weight
69956.47 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Arias HR, Bhumireddy P: Anesthetics as chemical tools to study the structure and function of nicotinic acetylcholine receptors. Curr Protein Pept Sci. 2005 Oct;6(5):451-72. [Article]
  3. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Antagonist
General Function
Toxic substance binding
Specific Function
After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The cha...
Gene Name
CHRNA7
Uniprot ID
P36544
Uniprot Name
Neuronal acetylcholine receptor subunit alpha-7
Molecular Weight
56448.925 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Arias HR, Bhumireddy P: Anesthetics as chemical tools to study the structure and function of nicotinic acetylcholine receptors. Curr Protein Pept Sci. 2005 Oct;6(5):451-72. [Article]
  3. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Antagonist
General Function
Ionotropic glutamate receptor activity
Specific Function
Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory ne...
Gene Name
GRIA2
Uniprot ID
P42262
Uniprot Name
Glutamate receptor 2
Molecular Weight
98820.32 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Antagonist
General Function
Kainate selective glutamate receptor activity
Specific Function
Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a co...
Gene Name
GRIK2
Uniprot ID
Q13002
Uniprot Name
Glutamate receptor ionotropic, kainate 2
Molecular Weight
102582.475 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]

Drug created at July 06, 2007 19:49 / Updated at June 12, 2020 16:51