You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on DrugBank.
Identification
NameBarbituric acid derivative
Accession NumberDB01496
TypeSmall Molecule
GroupsExperimental, Illicit
DescriptionNot Available
Structure
Thumb
SynonymsNot Available
External Identifiers Not Available
Approved Prescription ProductsNot Available
Approved Generic Prescription ProductsNot Available
Approved Over the Counter ProductsNot Available
Unapproved/Other Products Not Available
International BrandsNot Available
Brand mixturesNot Available
SaltsNot Available
CategoriesNot Available
UNIIR1JI58032B
CAS numberNot Available
WeightAverage: 368.33
Monoisotopic: 368.044247533
Chemical FormulaC16H11F3N2O3S
InChI KeyDNZPLHRZXUJATK-UHFFFAOYSA-N
InChI
InChI=1S/C16H11F3N2O3S/c17-16(18,19)11-4-2-1-3-9(11)12-6-5-8(24-12)7-10-13(22)20-15(25)21-14(10)23/h1-6,10H,7H2,(H2,20,21,22,23,25)
IUPAC Name
2-sulfanylidene-5-({5-[2-(trifluoromethyl)phenyl]furan-2-yl}methyl)-1,3-diazinane-4,6-dione
SMILES
FC(F)(F)C1=CC=CC=C1C1=CC=C(CC2C(=O)NC(=S)NC2=O)O1
Pharmacology
IndicationNot Available
Structured Indications Not Available
PharmacodynamicsNot Available
Mechanism of action
TargetKindPharmacological actionActionsOrganismUniProt ID
Gamma-aminobutyric acid receptor subunit alpha-1Proteinyes
potentiator
HumanP14867 details
Gamma-aminobutyric acid receptor subunit alpha-2Proteinyes
potentiator
HumanP47869 details
Gamma-aminobutyric acid receptor subunit alpha-3Proteinyes
potentiator
HumanP34903 details
Gamma-aminobutyric acid receptor subunit alpha-4Proteinyes
potentiator
HumanP48169 details
Gamma-aminobutyric acid receptor subunit alpha-5Proteinyes
potentiator
HumanP31644 details
Gamma-aminobutyric acid receptor subunit alpha-6Proteinyes
potentiator
HumanQ16445 details
Neuronal acetylcholine receptor subunit alpha-4Proteinunknown
antagonist
HumanP43681 details
Neuronal acetylcholine receptor subunit alpha-7Proteinunknown
antagonist
HumanP36544 details
Glutamate receptor 2Proteinunknown
antagonist
HumanP42262 details
Glutamate receptor ionotropic, kainate 2Proteinunknown
antagonist
HumanQ13002 details
Related Articles
AbsorptionNot Available
Volume of distributionNot Available
Protein bindingNot Available
MetabolismNot Available
Route of eliminationNot Available
Half lifeNot Available
ClearanceNot Available
ToxicityNot Available
Affected organismsNot Available
PathwaysNot Available
SNP Mediated EffectsNot Available
SNP Mediated Adverse Drug ReactionsNot Available
Interactions
Drug InteractionsNot Available
Food InteractionsNot Available
References
Synthesis Reference

Akinori Fujita, “Phenylurethane compounds and methods for producing same, asymmetric urea compounds and methods for producing same, barbituric acid derivative, and diazo thermal recording material containing the derivative.” U.S. Patent US20020161225, issued October 31, 2002.

US20020161225
General ReferencesNot Available
External Links
ATC CodesNot Available
AHFS CodesNot Available
PDB EntriesNot Available
FDA labelNot Available
MSDSNot Available
ADMET
Predicted ADMET features
PropertyValueProbability
Human Intestinal Absorption+0.9027
Blood Brain Barrier+0.9146
Caco-2 permeable-0.5855
P-glycoprotein substrateNon-substrate0.7974
P-glycoprotein inhibitor INon-inhibitor0.5146
P-glycoprotein inhibitor IINon-inhibitor0.9087
Renal organic cation transporterNon-inhibitor0.8538
CYP450 2C9 substrateNon-substrate0.7901
CYP450 2D6 substrateNon-substrate0.8267
CYP450 3A4 substrateNon-substrate0.6502
CYP450 1A2 substrateNon-inhibitor0.5
CYP450 2C9 inhibitorInhibitor0.6386
CYP450 2D6 inhibitorNon-inhibitor0.8843
CYP450 2C19 inhibitorInhibitor0.576
CYP450 3A4 inhibitorInhibitor0.5624
CYP450 inhibitory promiscuityHigh CYP Inhibitory Promiscuity0.7148
Ames testNon AMES toxic0.6382
CarcinogenicityNon-carcinogens0.7788
BiodegradationNot ready biodegradable1.0
Rat acute toxicity2.4912 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.9975
hERG inhibition (predictor II)Non-inhibitor0.7378
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397 )
Pharmacoeconomics
ManufacturersNot Available
PackagersNot Available
Dosage formsNot Available
PricesNot Available
PatentsNot Available
Properties
StateSolid
Experimental PropertiesNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.0206 mg/mLALOGPS
logP3.19ALOGPS
logP3.09ChemAxon
logS-4.2ALOGPS
pKa (Strongest Acidic)3.41ChemAxon
pKa (Strongest Basic)-2.8ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area71.34 Å2ChemAxon
Rotatable Bond Count4ChemAxon
Refractivity86.77 m3·mol-1ChemAxon
Polarizability31.65 Å3ChemAxon
Number of Rings3ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Mass Spec (NIST)Not Available
SpectraNot Available
Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as thiobarbituric acid derivatives. These are organic compounds containing a 2-thioxodihydropyrimidine-4,6(1H,5H)-dione skeleton.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassDiazines
Sub ClassPyrimidines and pyrimidine derivatives
Direct ParentThiobarbituric acid derivatives
Alternative Parents
Substituents
  • Thiobarbiturate
  • Benzenoid
  • 1,3-dicarbonyl compound
  • 1,3-diazinane
  • Monocyclic benzene moiety
  • Heteroaromatic compound
  • Furan
  • Thiourea
  • Thiocarbonic acid derivative
  • Carboxamide group
  • Oxacycle
  • Azacycle
  • Carboxylic acid derivative
  • Hydrocarbon derivative
  • Organosulfur compound
  • Organooxygen compound
  • Organonitrogen compound
  • Organofluoride
  • Organohalogen compound
  • Carbonyl group
  • Alkyl halide
  • Alkyl fluoride
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External DescriptorsNot Available

Targets

Kind
Protein
Organism
Human
Pharmacological action
yes
Actions
potentiator
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By si...
Gene Name:
GABRA1
Uniprot ID:
P14867
Molecular Weight:
51801.395 Da
References
  1. Whiting PJ: The GABAA receptor gene family: new opportunities for drug development. Curr Opin Drug Discov Devel. 2003 Sep;6(5):648-57. [PubMed:14579514 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
  3. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  4. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207 ]
Kind
Protein
Organism
Human
Pharmacological action
yes
Actions
potentiator
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA2
Uniprot ID:
P47869
Molecular Weight:
51325.85 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
Kind
Protein
Organism
Human
Pharmacological action
yes
Actions
potentiator
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA3
Uniprot ID:
P34903
Molecular Weight:
55164.055 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
Kind
Protein
Organism
Human
Pharmacological action
yes
Actions
potentiator
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA4
Uniprot ID:
P48169
Molecular Weight:
61622.645 Da
References
  1. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
Kind
Protein
Organism
Human
Pharmacological action
yes
Actions
potentiator
General Function:
Transporter activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA5
Uniprot ID:
P31644
Molecular Weight:
52145.645 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
Kind
Protein
Organism
Human
Pharmacological action
yes
Actions
potentiator
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA6
Uniprot ID:
Q16445
Molecular Weight:
51023.69 Da
References
  1. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
  2. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
antagonist
General Function:
Ligand-gated ion channel activity
Specific Function:
After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeable to sodium ions.
Gene Name:
CHRNA4
Uniprot ID:
P43681
Molecular Weight:
69956.47 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Arias HR, Bhumireddy P: Anesthetics as chemical tools to study the structure and function of nicotinic acetylcholine receptors. Curr Protein Pept Sci. 2005 Oct;6(5):451-72. [PubMed:16248797 ]
  3. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
antagonist
General Function:
Toxic substance binding
Specific Function:
After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The channel is blocked by alpha-bungarotoxin.
Gene Name:
CHRNA7
Uniprot ID:
P36544
Molecular Weight:
56448.925 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Arias HR, Bhumireddy P: Anesthetics as chemical tools to study the structure and function of nicotinic acetylcholine receptors. Curr Protein Pept Sci. 2005 Oct;6(5):451-72. [PubMed:16248797 ]
  3. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
antagonist
General Function:
Ionotropic glutamate receptor activity
Specific Function:
Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and t...
Gene Name:
GRIA2
Uniprot ID:
P42262
Molecular Weight:
98820.32 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
antagonist
General Function:
Kainate selective glutamate receptor activity
Specific Function:
Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inacti...
Gene Name:
GRIK2
Uniprot ID:
Q13002
Molecular Weight:
102582.475 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207 ]
Comments
comments powered by Disqus
Drug created on July 31, 2007 07:09 / Updated on August 17, 2016 12:23