You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on DrugBank.
Identification
NameTetrahydrofolic acid
Accession NumberDB00116  (NUTR00056)
TypeSmall Molecule
GroupsApproved, Nutraceutical
Description

Tetrahydrofolic acid is a folic acid derivative. It is produced from dihydrofolic acid by dihydrofolate reductase.
It is converted into 5,10-methylenetetrahydrofolate by serine hydroxymethyltransferase. It is a coenzyme in many reactions, especially in the metabolism of amino acids and nucleic acids. It acts as a donor of a group with one carbon atom. It gets this carbon atom by sequestering formaldehyde produced in other processes.

Structure
Thumb
Synonyms
(6S)-Tetrahydrofolate
(6S)-Tetrahydrofolic acid
(6S)-THFA
5,6,7,8-tetrahydrofolate
5,6,7,8-tetrahydrofolic acid
tetrahydrofolate
Tetrahydrofolic acid
THF
External Identifiers Not Available
Approved Prescription ProductsNot Available
Approved Generic Prescription ProductsNot Available
Approved Over the Counter ProductsNot Available
Unapproved/Other Products Not Available
International BrandsNot Available
Brand mixturesNot Available
SaltsNot Available
Categories
UNII43ZWB253H4
CAS number135-16-0
WeightAverage: 445.4292
Monoisotopic: 445.170981503
Chemical FormulaC19H23N7O6
InChI KeyInChIKey=MSTNYGQPCMXVAQ-KIYNQFGBSA-N
InChI
InChI=1S/C19H23N7O6/c20-19-25-15-14(17(30)26-19)23-11(8-22-15)7-21-10-3-1-9(2-4-10)16(29)24-12(18(31)32)5-6-13(27)28/h1-4,11-12,21,23H,5-8H2,(H,24,29)(H,27,28)(H,31,32)(H4,20,22,25,26,30)/t11?,12-/m0/s1
IUPAC Name
(2S)-2-[(4-{[(2-amino-4-oxo-1,4,5,6,7,8-hexahydropteridin-6-yl)methyl]amino}phenyl)formamido]pentanedioic acid
SMILES
NC1=NC(=O)C2=C(NCC(CNC3=CC=C(C=C3)C(=O)N[C@@H](CCC(O)=O)C(O)=O)N2)N1
Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as tetrahydrofolic acids. These are heterocyclic compounds based on the 5,6,7,8-tetrahydropteroic acid skeleton conjugated with at least one L-glutamic acid unit.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassPteridines and derivatives
Sub ClassPterins and derivatives
Direct ParentTetrahydrofolic acids
Alternative Parents
Substituents
  • Tetrahydrofolic acid
  • N-acyl-alpha amino acid or derivatives
  • N-acyl-alpha-amino acid
  • Hippuric acid
  • Hippuric acid or derivatives
  • Aminobenzoic acid or derivatives
  • Alpha-amino acid or derivatives
  • N-substituted-alpha-amino acid
  • Benzoic acid or derivatives
  • Benzamide
  • Aminobenzamide
  • Phenylalkylamine
  • Substituted aniline
  • Benzoyl
  • Secondary aliphatic/aromatic amine
  • Pyrimidone
  • Aniline
  • Amino fatty acid
  • Fatty acyl
  • Imidolactam
  • Benzenoid
  • Pyrimidine
  • Primary aromatic amine
  • Dicarboxylic acid or derivatives
  • Monocyclic benzene moiety
  • Heteroaromatic compound
  • Vinylogous amide
  • Secondary carboxylic acid amide
  • Lactam
  • Carboxamide group
  • Azacycle
  • Secondary amine
  • Carboxylic acid
  • Carboxylic acid derivative
  • Hydrocarbon derivative
  • Primary amine
  • Organooxygen compound
  • Organonitrogen compound
  • Carbonyl group
  • Amine
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Pharmacology
IndicationFor nutritional supplementation, also for treating dietary shortage or imbalance.
PharmacodynamicsTetrahydrofolate is the main active metabolite of dietary folate. It is vital as a coenzyme in reactions involving transfers of single carbon groups. Tetrahydrofolate has a role in nucleic and amino acid synthesis. As nucleic and amino acid synthesis is affected by a deficiency of tetrahydrofolate, actively dividing and growing cells tend to be the first affected. Tetrahydrofolate is used to treat topical sprue and megaloblastic and macrocytic anemias, hematologic complications resulting from a deficiency in folic acid.
Mechanism of actionTetrahydrofolate is transported across cells by receptor-mediated endocytosis where it is needed to maintain normal erythropoiesis, synthesize purine and thymidylate nucleic acids, interconvert amino acids, methylate tRNA, and generate and use formate.
Related Articles
AbsorptionNot Available
Volume of distributionNot Available
Protein bindingNot Available
MetabolismNot Available
Route of eliminationNot Available
Half lifeNot Available
ClearanceNot Available
ToxicityNot Available
Affected organisms
  • Humans and other mammals
Pathways
PathwayCategorySMPDB ID
Betaine MetabolismMetabolicSMP00123
Cystathionine Beta-Synthase DeficiencyDiseaseSMP00177
Gout or Kelley-Seegmiller SyndromeDiseaseSMP00365
Azathioprine Action PathwayDrug actionSMP00427
Xanthinuria type IIDiseaseSMP00513
3-Phosphoglycerate dehydrogenase deficiencyDiseaseSMP00721
Methionine MetabolismMetabolicSMP00033
Purine MetabolismMetabolicSMP00050
Adenosine Deaminase DeficiencyDiseaseSMP00144
Xanthine Dehydrogenase Deficiency (Xanthinuria)DiseaseSMP00220
Methionine Adenosyltransferase DeficiencyDiseaseSMP00221
HypermethioninemiaDiseaseSMP00341
Methotrexate Action PathwayDrug actionSMP00432
Glycine and Serine MetabolismMetabolicSMP00004
Ammonia RecyclingMetabolicSMP00009
Dihydropyrimidine Dehydrogenase Deficiency (DHPD)DiseaseSMP00179
Dimethylglycine Dehydrogenase DeficiencyDiseaseSMP00242
SarcosinemiaDiseaseSMP00244
Methylenetetrahydrofolate Reductase Deficiency (MTHFRD)DiseaseSMP00340
Lesch-Nyhan Syndrome (LNS)DiseaseSMP00364
Myoadenylate deaminase deficiencyDiseaseSMP00537
Methylenetetrahydrofolate Reductase Deficiency (MTHFRD)DiseaseSMP00543
Adenylosuccinate Lyase DeficiencyDiseaseSMP00167
HistidinemiaDiseaseSMP00191
Molybdenum Cofactor DeficiencyDiseaseSMP00203
Purine Nucleoside Phosphorylase DeficiencyDiseaseSMP00210
S-Adenosylhomocysteine (SAH) Hydrolase DeficiencyDiseaseSMP00214
Glycine N-methyltransferase DeficiencyDiseaseSMP00222
Non Ketotic HyperglycinemiaDiseaseSMP00223
Dimethylglycine Dehydrogenase DeficiencyDiseaseSMP00484
SNP Mediated EffectsNot Available
SNP Mediated Adverse Drug ReactionsNot Available
ADMET
Predicted ADMET features
PropertyValueProbability
Human Intestinal Absorption-0.5181
Blood Brain Barrier-0.533
Caco-2 permeable-0.8443
P-glycoprotein substrateSubstrate0.7509
P-glycoprotein inhibitor INon-inhibitor0.972
P-glycoprotein inhibitor IINon-inhibitor0.9966
Renal organic cation transporterNon-inhibitor0.8752
CYP450 2C9 substrateNon-substrate0.8058
CYP450 2D6 substrateNon-substrate0.7984
CYP450 3A4 substrateNon-substrate0.637
CYP450 1A2 substrateNon-inhibitor0.9344
CYP450 2C9 inhibitorNon-inhibitor0.9265
CYP450 2D6 inhibitorNon-inhibitor0.9437
CYP450 2C19 inhibitorNon-inhibitor0.9215
CYP450 3A4 inhibitorNon-inhibitor0.9161
CYP450 inhibitory promiscuityLow CYP Inhibitory Promiscuity0.9631
Ames testNon AMES toxic0.8293
CarcinogenicityNon-carcinogens0.954
BiodegradationNot ready biodegradable0.8759
Rat acute toxicity2.4563 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.9534
hERG inhibition (predictor II)Non-inhibitor0.6623
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397 )
Pharmacoeconomics
ManufacturersNot Available
PackagersNot Available
Dosage formsNot Available
PricesNot Available
PatentsNot Available
Properties
StateSolid
Experimental Properties
PropertyValueSource
logP-2.7Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.269 mg/mLALOGPS
logP-0.96ALOGPS
logP-4.2ChemAxon
logS-3.2ALOGPS
pKa (Strongest Acidic)3.51ChemAxon
pKa (Strongest Basic)3.58ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count12ChemAxon
Hydrogen Donor Count8ChemAxon
Polar Surface Area207.27 Å2ChemAxon
Rotatable Bond Count9ChemAxon
Refractivity121.39 m3·mol-1ChemAxon
Polarizability42.95 Å3ChemAxon
Number of Rings3ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Mass Spec (NIST)Not Available
SpectraNot Available
References
Synthesis Reference

Attilio Melera, Fabrizio Marazza, “Process for the preparation of alkaline earth metal salts of (6R)-N(10)-formyl-5,6,7,8-tetrahydrofolic acid.” U.S. Patent US5332815, issued May, 1954.

US5332815
General ReferencesNot Available
External Links
ATC CodesNot Available
AHFS CodesNot Available
PDB Entries
FDA labelNot Available
MSDSNot Available
Interactions
Drug InteractionsNot Available
Food InteractionsNot Available

Targets

Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
cofactor
General Function:
Methylenetetrahydrofolate dehydrogenase [nad(p)+] activity
Specific Function:
Not Available
Gene Name:
MTHFD1
Uniprot ID:
P11586
Molecular Weight:
101558.37 Da
References
  1. Akar N, Akar E, Ozel D, Deda G, Sipahi T: Common mutations at the homocysteine metabolism pathway and pediatric stroke. Thromb Res. 2001 Apr 15;102(2):115-20. [PubMed:11323021 ]
  2. Walkup AS, Appling DR: Enzymatic characterization of human mitochondrial C1-tetrahydrofolate synthase. Arch Biochem Biophys. 2005 Oct 15;442(2):196-205. Epub 2005 Aug 30. [PubMed:16171773 ]
  3. Matakidou A, El Galta R, Rudd MF, Webb EL, Bridle H, Eisen T, Houlston RS: Prognostic significance of folate metabolism polymorphisms for lung cancer. Br J Cancer. 2007 Jul 16;97(2):247-52. Epub 2007 May 29. [PubMed:17533396 ]
  4. Salmassi TM, Leadbetter JR: Analysis of genes of tetrahydrofolate-dependent metabolism from cultivated spirochaetes and the gut community of the termite Zootermopsis angusticollis. Microbiology. 2003 Sep;149(Pt 9):2529-37. [PubMed:12949177 ]
  5. Prasannan P, Pike S, Peng K, Shane B, Appling DR: Human mitochondrial C1-tetrahydrofolate synthase: gene structure, tissue distribution of the mRNA, and immunolocalization in Chinese hamster ovary calls. J Biol Chem. 2003 Oct 31;278(44):43178-87. Epub 2003 Aug 22. [PubMed:12937168 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
cofactor
General Function:
Phosphate ion binding
Specific Function:
Not Available
Gene Name:
MTHFD2
Uniprot ID:
P13995
Molecular Weight:
37894.775 Da
References
  1. Salmassi TM, Leadbetter JR: Analysis of genes of tetrahydrofolate-dependent metabolism from cultivated spirochaetes and the gut community of the termite Zootermopsis angusticollis. Microbiology. 2003 Sep;149(Pt 9):2529-37. [PubMed:12949177 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
cofactor
General Function:
Transaminase activity
Specific Function:
The glycine cleavage system catalyzes the degradation of glycine.
Gene Name:
AMT
Uniprot ID:
P48728
Molecular Weight:
43945.65 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423 ]
  3. Masai E, Sasaki M, Minakawa Y, Abe T, Sonoki T, Miyauchi K, Katayama Y, Fukuda M: A novel tetrahydrofolate-dependent O-demethylase gene is essential for growth of Sphingomonas paucimobilis SYK-6 with syringate. J Bacteriol. 2004 May;186(9):2757-65. [PubMed:15090517 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
cofactor
General Function:
Methyltransferase activity
Specific Function:
Not Available
Gene Name:
ALDH1L1
Uniprot ID:
O75891
Molecular Weight:
98828.505 Da
References
  1. Fu TF, Maras B, Barra D, Schirch V: A noncatalytic tetrahydrofolate tight binding site is on the small domain of 10-formyltetrahydrofolate dehydrogenase. Arch Biochem Biophys. 1999 Jul 15;367(2):161-6. [PubMed:10395731 ]
  2. Krupenko SA, Wagner C: Aspartate 142 is involved in both hydrolase and dehydrogenase catalytic centers of 10-formyltetrahydrofolate dehydrogenase. J Biol Chem. 1999 Dec 10;274(50):35777-84. [PubMed:10585460 ]
  3. Krupenko SA, Vlasov AP, Wagner C: On the role of conserved histidine 106 in 10-formyltetrahydrofolate dehydrogenase catalysis: connection between hydrolase and dehydrogenase mechanisms. J Biol Chem. 2001 Jun 29;276(26):24030-7. Epub 2001 Apr 24. [PubMed:11320079 ]
  4. Anguera MC, Field MS, Perry C, Ghandour H, Chiang EP, Selhub J, Shane B, Stover PJ: Regulation of folate-mediated one-carbon metabolism by 10-formyltetrahydrofolate dehydrogenase. J Biol Chem. 2006 Jul 7;281(27):18335-42. Epub 2006 Apr 20. [PubMed:16627483 ]
  5. Oleinik NV, Krupenko NI, Reuland SN, Krupenko SA: Leucovorin-induced resistance against FDH growth suppressor effects occurs through DHFR up-regulation. Biochem Pharmacol. 2006 Jul 14;72(2):256-66. Epub 2006 Apr 25. [PubMed:16712799 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
cofactor
General Function:
Zinc ion binding
Specific Function:
Catalyzes the transfer of a methyl group from methyl-cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate (By similarity).
Gene Name:
MTR
Uniprot ID:
Q99707
Molecular Weight:
140525.91 Da
References
  1. Hall DA, Jordan-Starck TC, Loo RO, Ludwig ML, Matthews RG: Interaction of flavodoxin with cobalamin-dependent methionine synthase. Biochemistry. 2000 Sep 5;39(35):10711-9. [PubMed:10978155 ]
  2. Fowler B: The folate cycle and disease in humans. Kidney Int Suppl. 2001 Feb;78:S221-9. [PubMed:11169015 ]
  3. Fu TF, di Salvo M, Schirch V: Enzymatic determination of homocysteine in cell extracts. Anal Biochem. 2001 Mar;290(2):359-65. [PubMed:11237340 ]
  4. Jarrett JT, Choi CY, Matthews RG: Changes in protonation associated with substrate binding and Cob(I)alamin formation in cobalamin-dependent methionine synthase. Biochemistry. 1997 Dec 16;36(50):15739-48. [PubMed:9398303 ]
  5. Jarrett JT, Hoover DM, Ludwig ML, Matthews RG: The mechanism of adenosylmethionine-dependent activation of methionine synthase: a rapid kinetic analysis of intermediates in reductive methylation of Cob(II)alamin enzyme. Biochemistry. 1998 Sep 8;37(36):12649-58. [PubMed:9730838 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
cofactor
General Function:
Microtubule binding
Specific Function:
Folate-dependent enzyme, that displays both transferase and deaminase activity. Serves to channel one-carbon units from formiminoglutamate to the folate pool.Binds and promotes bundling of vimentin filaments originating from the Golgi.
Gene Name:
FTCD
Uniprot ID:
O95954
Molecular Weight:
58925.93 Da
References
  1. Bashour AM, Bloom GS: 58K, a microtubule-binding Golgi protein, is a formiminotransferase cyclodeaminase. J Biol Chem. 1998 Jul 31;273(31):19612-7. [PubMed:9677387 ]
  2. Cook RJ: Disruption of histidine catabolism in NEUT2 mice. Arch Biochem Biophys. 2001 Aug 15;392(2):226-32. [PubMed:11488596 ]
  3. Kohls D, Croteau N, Mejia N, MacKenzie RE, Vrielink A: Crystallization and preliminary X-ray analysis of the formiminotransferase domain from the bifunctional enzyme formiminotransferase-cyclodeaminase. Acta Crystallogr D Biol Crystallogr. 1999 Jun;55(Pt 6):1206-8. [PubMed:10329787 ]
  4. Kohls D, Sulea T, Purisima EO, MacKenzie RE, Vrielink A: The crystal structure of the formiminotransferase domain of formiminotransferase-cyclodeaminase: implications for substrate channeling in a bifunctional enzyme. Structure. 2000 Jan 15;8(1):35-46. [PubMed:10673422 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
cofactor
General Function:
Protein homodimerization activity
Specific Function:
Bifunctional enzyme that catalyzes 2 steps in purine biosynthesis.Promotes insulin receptor/INSR autophosphorylation and is involved in INSR internalization (PubMed:25687571).
Gene Name:
ATIC
Uniprot ID:
P31939
Molecular Weight:
64615.255 Da
References
  1. Wolan DW, Greasley SE, Wall MJ, Benkovic SJ, Wilson IA: Structure of avian AICAR transformylase with a multisubstrate adduct inhibitor beta-DADF identifies the folate binding site. Biochemistry. 2003 Sep 23;42(37):10904-14. [PubMed:12974624 ]
  2. Bulock KG, Beardsley GP, Anderson KS: The kinetic mechanism of the human bifunctional enzyme ATIC (5-amino-4-imidazolecarboxamide ribonucleotide transformylase/inosine 5'-monophosphate cyclohydrolase). A surprising lack of substrate channeling. J Biol Chem. 2002 Jun 21;277(25):22168-74. Epub 2002 Apr 10. [PubMed:11948179 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
cofactor
General Function:
Serine binding
Specific Function:
Interconversion of serine and glycine.
Gene Name:
SHMT1
Uniprot ID:
P34896
Molecular Weight:
53082.18 Da
References
  1. Scarsdale JN, Radaev S, Kazanina G, Schirch V, Wright HT: Crystal structure at 2.4 A resolution of E. coli serine hydroxymethyltransferase in complex with glycine substrate and 5-formyl tetrahydrofolate. J Mol Biol. 2000 Feb 11;296(1):155-68. [PubMed:10656824 ]
  2. Rao JV, Prakash V, Rao NA, Savithri HS: The role of Glu74 and Tyr82 in the reaction catalyzed by sheep liver cytosolic serine hydroxymethyltransferase. Eur J Biochem. 2000 Oct;267(19):5967-76. [PubMed:10998057 ]
  3. Heil SG, Van der Put NM, Waas ET, den Heijer M, Trijbels FJ, Blom HJ: Is mutated serine hydroxymethyltransferase (SHMT) involved in the etiology of neural tube defects? Mol Genet Metab. 2001 Jun;73(2):164-72. [PubMed:11386852 ]
  4. Ravanel S, Cherest H, Jabrin S, Grunwald D, Surdin-Kerjan Y, Douce R, Rebeille F: Tetrahydrofolate biosynthesis in plants: molecular and functional characterization of dihydrofolate synthetase and three isoforms of folylpolyglutamate synthetase in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15360-5. [PubMed:11752472 ]
  5. Li R, Moore M, King J: Investigating the regulation of one-carbon metabolism in Arabidopsis thaliana. Plant Cell Physiol. 2003 Mar;44(3):233-41. [PubMed:12668769 ]
  6. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [PubMed:10592235 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
cofactor
General Function:
Pyridoxal phosphate binding
Specific Function:
Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Required to prevent uracil accumulation in mtDNA. Interconversion of serine and glycine. Associates with mitochondrial DNA.
Gene Name:
SHMT2
Uniprot ID:
P34897
Molecular Weight:
55992.385 Da
References
  1. Heil SG, Van der Put NM, Waas ET, den Heijer M, Trijbels FJ, Blom HJ: Is mutated serine hydroxymethyltransferase (SHMT) involved in the etiology of neural tube defects? Mol Genet Metab. 2001 Jun;73(2):164-72. [PubMed:11386852 ]
  2. Contestabile R, Paiardini A, Pascarella S, di Salvo ML, D'Aguanno S, Bossa F: l-Threonine aldolase, serine hydroxymethyltransferase and fungal alanine racemase. A subgroup of strictly related enzymes specialized for different functions. Eur J Biochem. 2001 Dec;268(24):6508-25. [PubMed:11737206 ]
  3. Li R, Moore M, King J: Investigating the regulation of one-carbon metabolism in Arabidopsis thaliana. Plant Cell Physiol. 2003 Mar;44(3):233-41. [PubMed:12668769 ]
  4. Appaji Rao N, Ambili M, Jala VR, Subramanya HS, Savithri HS: Structure-function relationship in serine hydroxymethyltransferase. Biochim Biophys Acta. 2003 Apr 11;1647(1-2):24-9. [PubMed:12686103 ]
  5. Angelaccio S, Chiaraluce R, Consalvi V, Buchenau B, Giangiacomo L, Bossa F, Contestabile R: Catalytic and thermodynamic properties of tetrahydromethanopterin-dependent serine hydroxymethyltransferase from Methanococcus jannaschii. J Biol Chem. 2003 Oct 24;278(43):41789-97. Epub 2003 Aug 5. [PubMed:12902326 ]
  6. Prabhu V, Chatson KB, Lui H, Abrams GD, King J: Effects of sulfanilamide and methotrexate on 13C fluxes through the glycine decarboxylase/serine hydroxymethyltransferase enzyme system in arabidopsis. Plant Physiol. 1998 Jan;116(1):137-44. [PubMed:9449840 ]
  7. Rajaram V, Bhavani BS, Kaul P, Prakash V, Appaji Rao N, Savithri HS, Murthy MR: Structure determination and biochemical studies on Bacillus stearothermophilus E53Q serine hydroxymethyltransferase and its complexes provide insights on function and enzyme memory. FEBS J. 2007 Aug;274(16):4148-60. Epub 2007 Jul 25. [PubMed:17651438 ]
  8. Vatsyayan R, Roy U: Molecular cloning and biochemical characterization of Leishmania donovani serine hydroxymethyltransferase. Protein Expr Purif. 2007 Apr;52(2):433-40. Epub 2006 Oct 26. [PubMed:17142057 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
cofactor
General Function:
Protein complex binding
Specific Function:
Catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine.
Gene Name:
MTHFR
Uniprot ID:
P42898
Molecular Weight:
74595.895 Da
References
  1. Ubbink JB, Christianson A, Bester MJ, Van Allen MI, Venter PA, Delport R, Blom HJ, van der Merwe A, Potgieter H, Vermaak WJ: Folate status, homocysteine metabolism, and methylene tetrahydrofolate reductase genotype in rural South African blacks with a history of pregnancy complicated by neural tube defects. Metabolism. 1999 Feb;48(2):269-74. [PubMed:10024094 ]
  2. Heijmans BT, Gussekloo J, Kluft C, Droog S, Lagaay AM, Knook DL, Westendorp RG, Slagboom EP: Mortality risk in men is associated with a common mutation in the methylene-tetrahydrofolate reductase gene (MTHFR). Eur J Hum Genet. 1999 Feb-Mar;7(2):197-204. [PubMed:10196703 ]
  3. Tsai MY, Welge BG, Hanson NQ, Bignell MK, Vessey J, Schwichtenberg K, Yang F, Bullemer FE, Rasmussen R, Graham KJ: Genetic causes of mild hyperhomocysteinemia in patients with premature occlusive coronary artery diseases. Atherosclerosis. 1999 Mar;143(1):163-70. [PubMed:10208491 ]
  4. Holmes ZR, Regan L, Chilcott I, Cohen H: The C677T MTHFR gene mutation is not predictive of risk for recurrent fetal loss. Br J Haematol. 1999 Apr;105(1):98-101. [PubMed:10233370 ]
  5. Larsson J, Hultberg B, Hillarp A: Hyperhomocysteinemia and the MTHFR C677T mutation in central retinal vein occlusion. Acta Ophthalmol Scand. 2000 Jun;78(3):340-3. [PubMed:10893069 ]
  6. Siva A, De Lange M, Clayton D, Monteith S, Spector T, Brown MJ: The heritability of plasma homocysteine, and the influence of genetic variation in the homocysteine methylation pathway. QJM. 2007 Aug;100(8):495-9. Epub 2007 Jul 17. [PubMed:17636160 ]
  7. Leopardi P, Marcon F, Caiola S, Cafolla A, Siniscalchi E, Zijno A, Crebelli R: Effects of folic acid deficiency and MTHFR C677T polymorphism on spontaneous and radiation-induced micronuclei in human lymphocytes. Mutagenesis. 2006 Sep;21(5):327-33. Epub 2006 Sep 1. [PubMed:16950805 ]
  8. Ott K, Vogelsang H, Marton N, Becker K, Lordick F, Kobl M, Schuhmacher C, Novotny A, Mueller J, Fink U, Ulm K, Siewert JR, Hofler H, Keller G: The thymidylate synthase tandem repeat promoter polymorphism: A predictor for tumor-related survival in neoadjuvant treated locally advanced gastric cancer. Int J Cancer. 2006 Dec 15;119(12):2885-94. [PubMed:16929515 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
cofactor
General Function:
Pyridoxal phosphate binding
Specific Function:
Interconversion of serine and glycine.
Gene Name:
Not Available
Uniprot ID:
Q53ET4
Molecular Weight:
55973.345 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423 ]
  3. Chang WN, Tsai JN, Chen BH, Huang HS, Fu TF: Serine hydroxymethyltransferase isoforms are differentially inhibited by leucovorin: characterization and comparison of recombinant zebrafish serine hydroxymethyltransferases. Drug Metab Dispos. 2007 Nov;35(11):2127-37. Epub 2007 Jul 30. [PubMed:17664250 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
cofactor
General Function:
Methionyl-trna formyltransferase activity
Specific Function:
Formylates methionyl-tRNA in mitochondria. A single tRNA(Met) gene gives rise to both an initiator and an elongator species via an unknown mechanism (By similarity).
Gene Name:
MTFMT
Uniprot ID:
Q96DP5
Molecular Weight:
43831.73 Da
References
  1. Li Y, Holmes WB, Appling DR, RajBhandary UL: Initiation of protein synthesis in Saccharomyces cerevisiae mitochondria without formylation of the initiator tRNA. J Bacteriol. 2000 May;182(10):2886-92. [PubMed:10781559 ]

Transporters

Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
inhibitor
General Function:
Organic anion transmembrane transporter activity
Specific Function:
Mediates hepatobiliary excretion of numerous organic anions. May function as a cellular cisplatin transporter.
Gene Name:
ABCC2
Uniprot ID:
Q92887
Molecular Weight:
174205.64 Da
References
  1. Kusuhara H, Han YH, Shimoda M, Kokue E, Suzuki H, Sugiyama Y: Reduced folate derivatives are endogenous substrates for cMOAT in rats. Am J Physiol. 1998 Oct;275(4 Pt 1):G789-96. [PubMed:9756510 ]
Comments
comments powered by Disqus
Drug created on June 13, 2005 07:24 / Updated on August 17, 2016 12:23