You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on DrugBank.
Identification
NameDicoumarol
Accession NumberDB00266  (APRD00761)
TypeSmall Molecule
GroupsApproved
Description

An oral anticoagulant that interferes with the metabolism of vitamin K. It is also used in biochemical experiments as an inhibitor of reductases. [PubChem]

Structure
Thumb
Synonyms
SynonymLanguageCode
3,3'-Methylen-bis(4-hydroxy-cumarin)Not AvailableNot Available
3,3'-Methylene-bis(4-hydroxycoumarine)Not AvailableNot Available
3,3'-Methylenebis(4-hydroxy-1,2-benzopyrone)Not AvailableNot Available
3,3'-Methylenebis(4-hydroxy-2H-1-benzopyran-2-one)Not AvailableNot Available
3,3'-Methylenebis(4-hydroxycoumarin)Not AvailableNot Available
bis-3,3'-(4-hydroxycoumarinyl)methaneNot AvailableNot Available
bis-hydroxycoumarinNot AvailableNot Available
Bis(4-hydroxycoumarin-3-yl)methaneNot AvailableNot Available
di-(4-hydroxy-3-coumarinyl)methaneNot AvailableNot Available
DicoumarolNot AvailableNot Available
DicoumarolumNot AvailableNot Available
DicumarolNot AvailableUSAN
Prescription ProductsNot Available
Generic Prescription ProductsNot Available
Over the Counter ProductsNot Available
International BrandsNot Available
Brand mixturesNot Available
SaltsNot Available
Categories
CAS number66-76-2
WeightAverage: 336.295
Monoisotopic: 336.063388116
Chemical FormulaC19H12O6
InChI KeyDOBMPNYZJYQDGZ-UHFFFAOYSA-N
InChI
InChI=1S/C19H12O6/c20-16-10-5-1-3-7-14(10)24-18(22)12(16)9-13-17(21)11-6-2-4-8-15(11)25-19(13)23/h1-8,20-21H,9H2
IUPAC Name
4-hydroxy-3-[(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl]-2H-chromen-2-one
SMILES
OC1=C(CC2=C(O)C3=C(OC2=O)C=CC=C3)C(=O)OC2=C1C=CC=C2
Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as 4-hydroxycoumarins. These are coumarins that contain one or more hydroxyl groups attached to C4-position the coumarin skeleton.
KingdomOrganic compounds
Super ClassPhenylpropanoids and polyketides
ClassCoumarins and derivatives
Sub ClassHydroxycoumarins
Direct Parent4-hydroxycoumarins
Alternative Parents
Substituents
  • 4-hydroxycoumarin
  • 1-benzopyran
  • Benzopyran
  • Pyranone
  • Benzenoid
  • Pyran
  • Heteroaromatic compound
  • Vinylogous acid
  • Lactone
  • Oxacycle
  • Organoheterocyclic compound
  • Monocarboxylic acid or derivatives
  • Hydrocarbon derivative
  • Organooxygen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Pharmacology
IndicationFor decreasing blood clotting. Often used along with heparin for treatment of deep vein thrombosis.
PharmacodynamicsDicumarol is an coumarin-like compound found in sweet clover. It is used as an oral anticoagulant and acts by inhibiting the hepatic synthesis of vitamin K-dependent coagulation factors (prothrombin and factors VII, IX, and X). It is also used in biochemical experiments as an inhibitor of reductases.
Mechanism of actionDicumarol inhibits vitamin K reductase, resulting in depletion of the reduced form of vitamin K (vitamin KH2). As vitamin K is a cofactor for the carboxylation of glutamate residues on the N-terminal regions of vitamin K-dependent proteins, this limits the gamma-carboxylation and subsequent activation of the vitamin K-dependent coagulant proteins. The synthesis of vitamin K-dependent coagulation factors II, VII, IX, and X and anticoagulant proteins C and S is inhibited. Depression of three of the four vitamin K-dependent coagulation factors (factors II, VII, and X) results in decresed prothrombin levels and a decrease in the amount of thrombin generated and bound to fibrin. This reduces the thrombogenicity of clots.
AbsorptionNot Available
Volume of distributionNot Available
Protein bindingNot Available
MetabolismNot Available
Route of eliminationNot Available
Half lifeNot Available
ClearanceNot Available
ToxicityLD50=233 mg/kg (orally in mice); LD50=250 mg/kg (orally in rats)
Affected organisms
  • Humans and other mammals
PathwaysNot Available
SNP Mediated EffectsNot Available
SNP Mediated Adverse Drug ReactionsNot Available
ADMET
Predicted ADMET features
PropertyValueProbability
Human Intestinal Absorption+0.8724
Blood Brain Barrier+0.8343
Caco-2 permeable-0.5899
P-glycoprotein substrateNon-substrate0.5073
P-glycoprotein inhibitor INon-inhibitor0.9304
P-glycoprotein inhibitor IINon-inhibitor0.8972
Renal organic cation transporterNon-inhibitor0.8982
CYP450 2C9 substrateNon-substrate0.8264
CYP450 2D6 substrateNon-substrate0.9116
CYP450 3A4 substrateNon-substrate0.7557
CYP450 1A2 substrateNon-inhibitor0.7905
CYP450 2C9 substrateInhibitor0.8948
CYP450 2D6 substrateNon-inhibitor0.9681
CYP450 2C19 substrateNon-inhibitor0.6071
CYP450 3A4 substrateNon-inhibitor0.9098
CYP450 inhibitory promiscuityLow CYP Inhibitory Promiscuity0.9165
Ames testNon AMES toxic0.9048
CarcinogenicityNon-carcinogens0.9549
BiodegradationNot ready biodegradable0.8347
Rat acute toxicity3.1251 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.9269
hERG inhibition (predictor II)Non-inhibitor0.9435
Pharmacoeconomics
Manufacturers
  • Eli lilly and co
  • Abbott laboratories pharmaceutical products div
PackagersNot Available
Dosage formsNot Available
PricesNot Available
PatentsNot Available
Properties
StateSolid
Experimental Properties
PropertyValueSource
melting point290 °CPhysProp
water solubility128 mg/LNot Available
logP2.07HANSCH,C ET AL. (1995)
Predicted Properties
PropertyValueSource
Water Solubility0.0662 mg/mLALOGPS
logP1.54ALOGPS
logP-1.6ChemAxon
logS-3.7ALOGPS
pKa (Strongest Acidic)-12ChemAxon
pKa (Strongest Basic)-3.1ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area93.06 Å2ChemAxon
Rotatable Bond Count2ChemAxon
Refractivity89.19 m3·mol-1ChemAxon
Polarizability32.32 Å3ChemAxon
Number of Rings4ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Mass Spec (NIST)Download (9.73 KB)
SpectraNot Available
References
Synthesis ReferenceNot Available
General Reference
  1. Cullen JJ, Hinkhouse MM, Grady M, Gaut AW, Liu J, Zhang YP, Weydert CJ, Domann FE, Oberley LW: Dicumarol inhibition of NADPH:quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism. Cancer Res. 2003 Sep 1;63(17):5513-20. Pubmed
  2. Mironov AA, Colanzi A, Polishchuk RS, Beznoussenko GV, Mironov AA Jr, Fusella A, Di Tullio G, Silletta MG, Corda D, De Matteis MA, Luini A: Dicumarol, an inhibitor of ADP-ribosylation of CtBP3/BARS, fragments golgi non-compact tubular zones and inhibits intra-golgi transport. Eur J Cell Biol. 2004 Jul;83(6):263-79. Pubmed
  3. Abdelmohsen K, Stuhlmann D, Daubrawa F, Klotz LO: Dicumarol is a potent reversible inhibitor of gap junctional intercellular communication. Arch Biochem Biophys. 2005 Feb 15;434(2):241-7. Pubmed
  4. Thanos CG, Liu Z, Reineke J, Edwards E, Mathiowitz E: Improving relative bioavailability of dicumarol by reducing particle size and adding the adhesive poly(fumaric-co-sebacic) anhydride. Pharm Res. 2003 Jul;20(7):1093-100. Pubmed
External Links
ATC CodesB01AA01
AHFS CodesNot Available
PDB EntriesNot Available
FDA labelNot Available
MSDSDownload (64.7 KB)
Interactions
Drug Interactions
Drug
AbciximabAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
AcenocoumarolMay enhance the anticoagulant effect of other Anticoagulants.
Acetylsalicylic acidAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
AlteplaseThrombolytic Agents may enhance the anticoagulant effect of Anticoagulants.
Aminosalicylic AcidSalicylates may enhance the anticoagulant effect of Anticoagulants.
AnagrelideAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
ApixabanApixaban may enhance the anticoagulant effect of Anticoagulants.
ArgatrobanMay enhance the anticoagulant effect of other Anticoagulants.
Bismuth SubsalicylateSalicylates may enhance the anticoagulant effect of Anticoagulants.
BivalirudinMay enhance the anticoagulant effect of other Anticoagulants.
CelecoxibNonsteroidal Anti-Inflammatory Agents may enhance the anticoagulant effect of Anticoagulants.
CilostazolAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
CitalopramAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
ClopidogrelAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
Cyproterone acetateProgestins may diminish the therapeutic effect of Anticoagulants. More specifically, the potential prothrombotic effects of some progestins and progestin-estrogen combinations may counteract anticoagulant effects.
Dabigatran etexilateDabigatran Etexilate may enhance the anticoagulant effect of Anticoagulants.
DalteparinMay enhance the anticoagulant effect of other Anticoagulants.
DanaparoidMay enhance the anticoagulant effect of other Anticoagulants.
DasatinibDasatinib may enhance the anticoagulant effect of Anticoagulants.
DeferasiroxMay enhance the adverse/toxic effect of Deferasirox. Specifically, the risk for GI ulceration/irritation or GI bleeding may be increased.
DesogestrelEstrogen Derivatives may diminish the anticoagulant effect of Anticoagulants. More specifically, the potential prothrombotic effects of some estrogens and progestin-estrogen combinations may counteract anticoagulant effects.
DesvenlafaxineAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
DiflunisalAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
DipyridamoleAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
DrospirenoneEstrogen Derivatives may diminish the anticoagulant effect of Anticoagulants. More specifically, the potential prothrombotic effects of some estrogens and progestin-estrogen combinations may counteract anticoagulant effects.
DuloxetineAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
EnoxaparinMay enhance the anticoagulant effect of other Anticoagulants.
EpoprostenolProstacyclin Analogues may enhance the adverse/toxic effect of Anticoagulants. Specifically, the antiplatelet effects of these agents may lead to an increased risk of bleeding with the combination.
EptifibatideAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
EscitalopramAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
EstropipateEstrogen Derivatives may diminish the anticoagulant effect of Anticoagulants. More specifically, the potential prothrombotic effects of some estrogens and progestin-estrogen combinations may counteract anticoagulant effects.
Ethinyl EstradiolEstrogen Derivatives may diminish the anticoagulant effect of Anticoagulants. More specifically, the potential prothrombotic effects of some estrogens and progestin-estrogen combinations may counteract anticoagulant effects.
EthynodiolEstrogen Derivatives may diminish the anticoagulant effect of Anticoagulants. More specifically, the potential prothrombotic effects of some estrogens and progestin-estrogen combinations may counteract anticoagulant effects.
EtodolacAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
EtonogestrelProgestins may diminish the therapeutic effect of Anticoagulants. More specifically, the potential prothrombotic effects of some progestins and progestin-estrogen combinations may counteract anticoagulant effects.
FenoprofenAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
FloctafenineAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
FluoxetineAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
FluvoxamineAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
Fondaparinux sodiumMay enhance the anticoagulant effect of other Anticoagulants.
HeparinMay enhance the anticoagulant effect of other Anticoagulants.
HomoharringtonineMay enhance the adverse/toxic effect of Omacetaxine. Specifically, the risk for bleeding-related events may be increased.
IbritumomabMay enhance the adverse/toxic effect of Ibritumomab. Both agents may contribute to an increased risk of bleeding.
IbuprofenAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
IcosapentOmega-3 Fatty Acids may enhance the anticoagulant effect of Anticoagulants.
Icosapent ethylOmega-3 Fatty Acids may enhance the anticoagulant effect of Anticoagulants.
IloprostProstacyclin Analogues may enhance the adverse/toxic effect of Anticoagulants. Specifically, the antiplatelet effects of these agents may lead to an increased risk of bleeding with the combination.
IndomethacinAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
KetoprofenAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
KetorolacAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
LevomilnacipranAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
LevonorgestrelProgestins may diminish the therapeutic effect of Anticoagulants. More specifically, the potential prothrombotic effects of some progestins and progestin-estrogen combinations may counteract anticoagulant effects.
Magnesium salicylateSalicylates may enhance the anticoagulant effect of Anticoagulants.
Medroxyprogesterone AcetateProgestins may diminish the therapeutic effect of Anticoagulants. More specifically, the potential prothrombotic effects of some progestins and progestin-estrogen combinations may counteract anticoagulant effects.
Mefenamic acidAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
Megestrol acetateProgestins may diminish the therapeutic effect of Anticoagulants. More specifically, the potential prothrombotic effects of some progestins and progestin-estrogen combinations may counteract anticoagulant effects.
MeloxicamAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
MestranolEstrogen Derivatives may diminish the anticoagulant effect of Anticoagulants. More specifically, the potential prothrombotic effects of some estrogens and progestin-estrogen combinations may counteract anticoagulant effects.
MilnacipranAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
NabumetoneAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
NadroparinMay enhance the anticoagulant effect of other Anticoagulants.
NaproxenAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
NorelgestrominEstrogen Derivatives may diminish the anticoagulant effect of Anticoagulants. More specifically, the potential prothrombotic effects of some estrogens and progestin-estrogen combinations may counteract anticoagulant effects.
NorethindroneProgestins may diminish the therapeutic effect of Anticoagulants. More specifically, the potential prothrombotic effects of some progestins and progestin-estrogen combinations may counteract anticoagulant effects.
NorgestimateEstrogen Derivatives may diminish the anticoagulant effect of Anticoagulants. More specifically, the potential prothrombotic effects of some estrogens and progestin-estrogen combinations may counteract anticoagulant effects.
ObinutuzumabMay enhance the adverse/toxic effect of Obinutuzumab. Specifically, the risk of serious bleeding-related events may be increased.
OxaprozinAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
ParoxetineAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
Pentosan PolysulfatePentosan Polysulfate Sodium may enhance the anticoagulant effect of Anticoagulants.
PiperazineEstrogen Derivatives may diminish the anticoagulant effect of Anticoagulants. More specifically, the potential prothrombotic effects of some estrogens and progestin-estrogen combinations may counteract anticoagulant effects.
PiroxicamAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
PrasugrelAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
ProgesteroneProgestins may diminish the therapeutic effect of Anticoagulants. More specifically, the potential prothrombotic effects of some progestins and progestin-estrogen combinations may counteract anticoagulant effects.
ReteplaseThrombolytic Agents may enhance the anticoagulant effect of Anticoagulants.
RivaroxabanMay enhance the anticoagulant effect of Rivaroxaban.
SalsalateSalicylates may enhance the anticoagulant effect of Anticoagulants.
SertralineAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
SulindacAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
TenecteplaseThrombolytic Agents may enhance the anticoagulant effect of Anticoagulants.
Tiaprofenic acidAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
TicagrelorAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
TiclopidineAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
TinzaparinMay enhance the anticoagulant effect of other Anticoagulants.
TipranavirTipranavir may enhance the anticoagulant effect of Anticoagulants.
TirofibanAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
TolmetinAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
TositumomabMay enhance the adverse/toxic effect of Tositumomab and Iodine I 131 Tositumomab. Specifically, the risk of bleeding-related adverse effects may be increased.
TreprostinilProstacyclin Analogues may enhance the adverse/toxic effect of Anticoagulants. Specifically, the antiplatelet effects of these agents may lead to an increased risk of bleeding with the combination.
VenlafaxineAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
VilazodoneAgents with Antiplatelet Properties may enhance the anticoagulant effect of Anticoagulants.
Vitamin EVitamin E may enhance the anticoagulant effect of Anticoagulants. Vitamin E may also increase the overall risk for bleeding.
VorapaxarVorapaxar may enhance the adverse/toxic effect of Anticoagulants. More specifically, this combination is expected to increase the risk of bleeding.
Food InteractionsNot Available

Targets

1. Vitamin K epoxide reductase complex subunit 1

Kind: protein

Organism: Human

Pharmacological action: yes

Actions: inhibitor

Components

Name UniProt ID Details
Vitamin K epoxide reductase complex subunit 1 Q9BQB6 Details

References:

  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. Pubmed
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. Pubmed
  3. Wallin R, Patrick SD, Ballard JO: Vitamin K antagonism of coumarin intoxication in the rat. Thromb Haemost. 1986 Apr 30;55(2):235-9. Pubmed
  4. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. Pubmed

2. NAD(P)H dehydrogenase [quinone] 1

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
NAD(P)H dehydrogenase [quinone] 1 P15559 Details

References:

  1. Chen S, Wu K, Zhang D, Sherman M, Knox R, Yang CS: Molecular characterization of binding of substrates and inhibitors to DT-diaphorase: combined approach involving site-directed mutagenesis, inhibitor-binding analysis, and computer modeling. Mol Pharmacol. 1999 Aug;56(2):272-8. Pubmed
  2. Jaiswal AK: Characterization and partial purification of microsomal NADH:quinone oxidoreductases. Arch Biochem Biophys. 2000 Mar 1;375(1):62-8. Pubmed
  3. Joseph P, Jaiswal AK: A unique cytosolic activity related but distinct from NQO1 catalyses metabolic activation of mitomycin C. Br J Cancer. 2000 Apr;82(7):1305-11. Pubmed
  4. Floreani M, Napoli E, Palatini P: Protective action of cardiac DT-diaphorase against menadione toxicity in guinea pig isolated atria. Biochem Pharmacol. 2000 Aug 15;60(4):601-5. Pubmed
  5. Arriagada C, Dagnino-Subiabre A, Caviedes P, Armero JM, Caviedes R, Segura-Aguilar J: Studies of aminochrome toxicity in a mouse derived neuronal cell line: is this toxicity mediated via glutamate transmission? Amino Acids. 2000;18(4):363-73. Pubmed
  6. Preusch PC, Smalley DM: Vitamin K1 2,3-epoxide and quinone reduction: mechanism and inhibition. Free Radic Res Commun. 1990;8(4-6):401-15. Pubmed

3. Quinone oxidoreductase

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Quinone oxidoreductase Q08257 Details

References:

  1. Evans PJ: Decreased intracellular proteolysis correlates with the maintenance of a specific isoenzyme of cytochrome P-450. Cell Biol Int. 1999;23(2):117-24. Pubmed
  2. Audi SH, Bongard RD, Dawson CA, Siegel D, Roerig DL, Merker MP: Duroquinone reduction during passage through the pulmonary circulation. Am J Physiol Lung Cell Mol Physiol. 2003 Nov;285(5):L1116-31. Epub 2003 Jul 25. Pubmed
  3. Asher G, Dym O, Tsvetkov P, Adler J, Shaul Y: The crystal structure of NADH quinone oxidoreductase 1 in complex with its potent inhibitor dicoumarol. Biochemistry. 2006 May 23;45(20):6372-8. Pubmed
  4. Maser E, Gebel T, Netter KJ: Carbonyl reduction of metyrapone in human liver. Biochem Pharmacol. 1991 Dec 11;42 Suppl:S93-8. Pubmed
  5. Hao H, Wang G, Cui N, Li J, Xie L, Ding Z: Identification of a novel intestinal first pass metabolic pathway: NQO1 mediated quinone reduction and subsequent glucuronidation. Curr Drug Metab. 2007 Feb;8(2):137-49. Pubmed

Enzymes

1. Cytochrome P450 2C9

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: substrate inhibitor

Components

Name UniProt ID Details
Cytochrome P450 2C9 P11712 Details

References:

  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed

Comments
comments powered by Disqus
Drug created on June 13, 2005 07:24 / Updated on September 25, 2013 16:59