You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on DrugBank.
Identification
NameTacrine
Accession NumberDB00382  (APRD00690)
TypeSmall Molecule
GroupsWithdrawn
Description

A centerally active cholinesterase inhibitor that has been used to counter the effects of muscle relaxants, as a respiratory stimulant, and in the treatment of Alzheimer’s disease and other central nervous system disorders. Tacrine has been discontinued for the United States market.

Structure
Thumb
Synonyms
SynonymLanguageCode
1,2,3,4-tetrahydroacridin-9-amineNot AvailableIUPAC
TacrinGermanINN
TacrineNot AvailableBAN, DCF
TacrinumLatinINN
TetrahydroaminacrineNot AvailableNot Available
TetrahydroaminoacridineNot AvailableNot Available
THANot AvailableIS
Prescription ProductsNot Available
Generic Prescription ProductsNot Available
Over the Counter ProductsNot Available
International Brands
NameCompany
CognexShionogi
TalemLKM
Brand mixturesNot Available
Salts
Name/CASStructureProperties
Tacrine Hydrochloride
ThumbNot applicableDBSALT001053
Categories
CAS number321-64-2
WeightAverage: 198.2637
Monoisotopic: 198.115698458
Chemical FormulaC13H14N2
InChI KeyYLJREFDVOIBQDA-UHFFFAOYSA-N
InChI
InChI=1S/C13H14N2/c14-13-9-5-1-3-7-11(9)15-12-8-4-2-6-10(12)13/h1,3,5,7H,2,4,6,8H2,(H2,14,15)
IUPAC Name
1,2,3,4-tetrahydroacridin-9-amine
SMILES
NC1=C2CCCCC2=NC2=CC=CC=C12
Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as acridines. These are organic compounds containing the acridine moiety, a linear tricyclic heterocycle which consists of two benzene rings joined by a pyridine ring.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassQuinolines and derivatives
Sub ClassBenzoquinolines
Direct ParentAcridines
Alternative Parents
Substituents
  • Acridine
  • Aminoquinoline
  • Aminopyridine
  • Benzenoid
  • Pyridine
  • Primary aromatic amine
  • Heteroaromatic compound
  • Azacycle
  • Hydrocarbon derivative
  • Primary amine
  • Organonitrogen compound
  • Amine
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Pharmacology
IndicationFor the palliative treatment of mild to moderate dementia of the Alzheimer's type.
PharmacodynamicsTacrine is a parasympathomimetic- a reversible cholinesterase inhibitor that is indicated for the treatment of mild to moderate dementia of the Alzheimer's type. An early pathophysiological feature of Alzheimer's disease that is associated with memory loss and cognitive deficits is a deficiency of acetylcholine as a result of selective loss of cholinergic neurons in the cerebral cortex, nucleus basalis, and hippocampus. Tacrine is postulated to exert its therapeutic effect by enhancing cholinergic function. This is accomplished by increasing the concentration of acetylcholine at cholinergic synapses through reversible inhibition of its hydrolysis by acetylcholinesterase. If this proposed mechanism of action is correct, tacrine's effect may lessen as the disease progresses and fewer cholinergic neurons remain functionally intact. There is no evidence that tacrine alters the course of the underlying dementing process.
Mechanism of actionThe mechanism of tacrine is not fully known, but it is suggested that the drug is an anticholinesterase agent which reversibly binds with and inactivates cholinesterases. This inhibits the hydrolysis of acetylcholine released from functioning cholinergic neurons, thus leading to an accumulation of acetylcholine at cholinergic synapses. The result is a prolonged effect of acetylcholine.
AbsorptionTacrine is rapidly absorbed. Absolute bioavailability of tacrine is approximately 17%.
Volume of distribution
  • 349 ± 193 L
Protein binding55%
Metabolism

Hepatic. Cytochrome P450 1A2 is the principal isozyme involved in tacrine metabolism. The major metabolite, 1-hydroxy-tacrine (velnacrine), has central cholinergic activity.

SubstrateEnzymesProduct
Tacrine
1-hydroxytacrineDetails
Route of eliminationNot Available
Half life2 to 4 hours
ClearanceNot Available
ToxicityOverdosage with cholinesterase inhibitors can cause a cholinergic crisis characterized by severe nausea/vomiting, salivation, sweating, bradycardia, hypotension, collapse, and convulsions. Increasing muscle weakness is a possibility and may result in death if respiratory muscles are involved. The estimated median lethal dose of tacrine following a single oral dose in rats is 40 mg/kg, or approximately 12 times the maximum recommended human dose of 160 mg/day.
Affected organisms
  • Humans and other mammals
PathwaysNot Available
SNP Mediated EffectsNot Available
SNP Mediated Adverse Drug ReactionsNot Available
ADMET
Predicted ADMET features
PropertyValueProbability
Human Intestinal Absorption+0.9783
Blood Brain Barrier+0.978
Caco-2 permeable-0.5267
P-glycoprotein substrateNon-substrate0.6195
P-glycoprotein inhibitor INon-inhibitor0.9247
P-glycoprotein inhibitor IINon-inhibitor0.9103
Renal organic cation transporterNon-inhibitor0.5073
CYP450 2C9 substrateNon-substrate0.8532
CYP450 2D6 substrateNon-substrate0.9116
CYP450 3A4 substrateNon-substrate0.7248
CYP450 1A2 substrateInhibitor0.9107
CYP450 2C9 substrateNon-inhibitor0.9071
CYP450 2D6 substrateNon-inhibitor0.9231
CYP450 2C19 substrateNon-inhibitor0.9025
CYP450 3A4 substrateNon-inhibitor0.8309
CYP450 inhibitory promiscuityHigh CYP Inhibitory Promiscuity0.5541
Ames testAMES toxic0.9107
CarcinogenicityNon-carcinogens0.9404
BiodegradationNot ready biodegradable0.9773
Rat acute toxicity3.4207 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.9351
hERG inhibition (predictor II)Non-inhibitor0.6164
Pharmacoeconomics
Manufacturers
  • Shionogi pharma inc
Packagers
Dosage formsNot Available
Prices
Unit descriptionCostUnit
Cognex 10 mg capsule3.03USD capsule
Cognex 20 mg capsule3.03USD capsule
Cognex 40 mg capsule3.03USD capsule
DrugBank does not sell nor buy drugs. Pricing information is supplied for informational purposes only.
PatentsNot Available
Properties
StateSolid
Experimental Properties
PropertyValueSource
melting point183.5 °CPhysProp
water solubility217 mg/LNot Available
logP2.71HANSCH,C ET AL. (1995)
pKa9.95 (at 20 °C)PERRIN,DD (1972)
Predicted Properties
PropertyValueSource
Water Solubility0.136 mg/mLALOGPS
logP3.13ALOGPS
logP2.63ChemAxon
logS-3.2ALOGPS
pKa (Strongest Basic)8.95ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area38.91 Å2ChemAxon
Rotatable Bond Count0ChemAxon
Refractivity61.74 m3·mol-1ChemAxon
Polarizability22.79 Å3ChemAxon
Number of Rings3ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Mass Spec (NIST)Download (9.22 KB)
SpectraNot Available
References
Synthesis Reference

S. Shirley Yang, Wayne Boisvert, Nouman A. Muhammad, Jay Weiss, “Controlled release tacrine drug delivery systems and methods for preparing same.” U.S. Patent US5576022, issued February, 1993.

US5576022
General Reference
  1. Qizilbash N, Whitehead A, Higgins J, Wilcock G, Schneider L, Farlow M: Cholinesterase inhibition for Alzheimer disease: a meta-analysis of the tacrine trials. Dementia Trialists’ Collaboration. JAMA. 1998 Nov 25;280(20):1777-82. Pubmed
  2. Hansen RA, Gartlehner G, Kaufer DJ, Lohr KN, Carey T: Pubmed
External Links
ATC CodesNot Available
AHFS CodesNot Available
PDB Entries
FDA labelNot Available
MSDSDownload (19.4 KB)
Interactions
Drug InteractionsNot Available
Food InteractionsNot Available

Targets

1. Acetylcholinesterase

Kind: protein

Organism: Human

Pharmacological action: yes

Actions: inhibitor

Components

Name UniProt ID Details
Acetylcholinesterase P22303 Details

References:

  1. Davis KL: Alzheimer’s disease: seeking new ways to preserve brain function. Interview by Alice V. Luddington. Geriatrics. 1999 Feb;54(2):42-7; quiz 48. Pubmed
  2. Wang H, Carlier PR, Ho WL, Wu DC, Lee NT, Li CP, Pang YP, Han YF: Effects of bis(7)-tacrine, a novel anti-Alzheimer’s agent, on rat brain AChE. Neuroreport. 1999 Mar 17;10(4):789-93. Pubmed
  3. Traykov L, Tavitian B, Jobert A, Boller F, Forette F, Crouzel C, Di Giamberardino L, Pappata S: In vivo PET study of cerebral [11C] methyl- tetrahydroaminoacridine distribution and kinetics in healthy human subjects. Eur J Neurol. 1999 May;6(3):273-8. Pubmed
  4. Wang H, Tang XC: Anticholinesterase effects of huperzine A, E2020, and tacrine in rats. Zhongguo Yao Li Xue Bao. 1998 Jan;19(1):27-30. Pubmed
  5. Kosasa T, Kuriya Y, Matsui K, Yamanishi Y: Effect of donepezil hydrochloride (E2020) on basal concentration of extracellular acetylcholine in the hippocampus of rats. Eur J Pharmacol. 1999 Sep 10;380(2-3):101-7. Pubmed
  6. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. Pubmed
  7. Takatori Y: [Mechanisms of neuroprotective effects of therapeutic acetylcholinesterase inhibitors used in treatment of Alzheimer’s disease] Yakugaku Zasshi. 2006 Aug;126(8):607-16. Pubmed
  8. Du DM, Carlier PR: Development of bivalent acetylcholinesterase inhibitors as potential therapeutic drugs for Alzheimer’s disease. Curr Pharm Des. 2004;10(25):3141-56. Pubmed
  9. Krustev AD, Argirova MD, Getova DP, Turiiski VI, Prissadova NA: Calcium-independent tacrine-induced relaxation of rat gastric corpus smooth muscles. Can J Physiol Pharmacol. 2006 Nov;84(11):1133-8. Pubmed
  10. Villarroya M, Garcia AG, Marco JL: New classes of AChE inhibitors with additional pharmacological effects of interest for the treatment of Alzheimer’s disease. Curr Pharm Des. 2004;10(25):3177-84. Pubmed
  11. Marco JL, Carreiras MC: Recent developments in the synthesis of acetylcholinesterase inhibitors. Mini Rev Med Chem. 2003 Sep;3(6):518-24. Pubmed
  12. Ahmed M, Rocha JB, Correa M, Mazzanti CM, Zanin RF, Morsch AL, Morsch VM, Schetinger MR: Inhibition of two different cholinesterases by tacrine. Chem Biol Interact. 2006 Aug 25;162(2):165-71. Epub 2006 Jun 17. Pubmed

2. Cholinesterase

Kind: protein

Organism: Human

Pharmacological action: yes

Actions: inhibitor

Components

Name UniProt ID Details
Cholinesterase P06276 Details

References:

  1. Wang H, Tang XC: Anticholinesterase effects of huperzine A, E2020, and tacrine in rats. Zhongguo Yao Li Xue Bao. 1998 Jan;19(1):27-30. Pubmed
  2. Krustev AD, Argirova MD, Getova DP, Turiiski VI, Prissadova NA: Calcium-independent tacrine-induced relaxation of rat gastric corpus smooth muscles. Can J Physiol Pharmacol. 2006 Nov;84(11):1133-8. Pubmed
  3. Marco JL, Carreiras MC: Recent developments in the synthesis of acetylcholinesterase inhibitors. Mini Rev Med Chem. 2003 Sep;3(6):518-24. Pubmed
  4. Ahmed M, Rocha JB, Correa M, Mazzanti CM, Zanin RF, Morsch AL, Morsch VM, Schetinger MR: Inhibition of two different cholinesterases by tacrine. Chem Biol Interact. 2006 Aug 25;162(2):165-71. Epub 2006 Jun 17. Pubmed

Enzymes

1. Cytochrome P450 1A2

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: substrate

Components

Name UniProt ID Details
Cytochrome P450 1A2 P05177 Details

References:

  1. Wang B, Zhou SF: Synthetic and natural compounds that interact with human cytochrome P450 1A2 and implications in drug development. Curr Med Chem. 2009;16(31):4066-218. Pubmed
  2. Flockhart DA. Drug Interactions: Cytochrome P450 Drug Interaction Table. Indiana University School of Medicine (2007). Accessed May 28, 2010.
  3. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed
  4. Obach RS, Reed-Hagen AE: Measurement of Michaelis constants for cytochrome P450-mediated biotransformation reactions using a substrate depletion approach. Drug Metab Dispos. 2002 Jul;30(7):831-7. Pubmed

Transporters

1. Multidrug resistance protein 1

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Multidrug resistance protein 1 P08183 Details

References:

  1. Mahar Doan KM, Humphreys JE, Webster LO, Wring SA, Shampine LJ, Serabjit-Singh CJ, Adkison KK, Polli JW: Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther. 2002 Dec;303(3):1029-37. Pubmed

Comments
comments powered by Disqus
Drug created on June 13, 2005 07:24 / Updated on March 15, 2014 15:29