You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on DrugBank.
Identification
NameFlupentixol
Accession NumberDB00875  (APRD00388)
TypeSmall Molecule
GroupsApproved, Withdrawn
Description

Flupentixol is an antipsychotic neuroleptic drug. It is a thioxanthene, and therefore closely related to the phenothiazines. Its primary use is as a long acting injection given two or three weekly to people with schizophrenia who have a poor compliance with medication and suffer frequent relapses of illness. It is a D1 and D2 receptor antagonist. It is not approved in the United States.

Structure
Thumb
Synonyms
SynonymLanguageCode
FlupenthixolNot AvailableNot Available
FlupenthixoleNot AvailableNot Available
FlupentixolGermanNot Available
FlupentixolFrenchNot Available
FlupentixolSpanishNot Available
FlupentixoloNot AvailableOS: DCIT
FlupentixolumLatinNot Available
Prescription ProductsNot Available
Generic Prescription ProductsNot Available
Over the Counter ProductsNot Available
International Brands
NameCompany
DepixolLundbeck A/S
FluanxolLundbeck A/S
JexitJohnson
Brand mixtures
Brand NameIngredients
AnxisetFlupentixol and Melitracen
DeanxitFlupentixol and Melitracen
FrenxitFlupentixol and Melitracen
MixitFlupentixol and Melitracen
MocalmFlupentixol and Melitracen
Salts
Name/CASStructureProperties
Flupentixol Decanoate
ThumbNot applicableDBSALT000928
Flupentixol Hydrochloride
ThumbNot applicableDBSALT000929
Categories
CAS number2709-56-0
WeightAverage: 436.533
Monoisotopic: 436.179618801
Chemical FormulaC23H27F3N2OS
InChI KeyDTTVNHWDONBIKE-DVZOWYKESA-N
InChI
InChI=1S/C23H27F3N2OS/c24-23(25,26)17-7-8-22-20(16-17)18(19-4-1-2-6-21(19)30-22)5-3-9-27-10-12-28(13-11-27)14-15-29/h1-2,4-8,16,20,22,29H,3,9-15H2/b18-5-
IUPAC Name
2-(4-{3-[2-(trifluoromethyl)-9,9a-dihydro-4aH-thioxanthen-9-ylidene]propyl}piperazin-1-yl)ethan-1-ol
SMILES
[H]C(CCN1CCN(CCO)CC1)=C1C2C=C(C=CC2SC2=C1C=CC=C2)C(F)(F)F
Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as thioxanthenes. These are organic polycyclic compounds containing a thioxanthene moiety, which is an aromatic tricycle derived from xanthene by replacing the oxygen atom with a sulfur atom.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassBenzothiopyrans
Sub Class1-benzothiopyrans
Direct ParentThioxanthenes
Alternative Parents
Substituents
  • Thioxanthene
  • Thiochromane
  • Alkylarylthioether
  • N-alkylpiperazine
  • Benzenoid
  • Thiopyran
  • Piperazine
  • 1,4-diazinane
  • Tertiary aliphatic amine
  • Tertiary amine
  • 1,2-aminoalcohol
  • Azacycle
  • Thioether
  • Alkanolamine
  • Hydrocarbon derivative
  • Primary alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Organofluoride
  • Organohalogen compound
  • Amine
  • Alkyl halide
  • Alkyl fluoride
  • Alcohol
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External DescriptorsNot Available
Pharmacology
IndicationFor use in the treatment of schizophrenia and depression
PharmacodynamicsFlupenthixol is an anxiolytic, antidepressive agent and a mood stabilizer. It inhibits the central monoamine receptors, particularly the dopamine D1 and D2 receptors. Therefore, it increases the amount of serotonin and noradrenaline that control mood and thinking, and improves mood.
Mechanism of actionFlupenthixol is a thioxanthene antipsychotic. The mechanism of action of Flupenthixol is not completely understood. Flupenthixol is a powerful antagonist of both D1 and D2 dopamine receptors, and an alpha-adrenergic receptor antagonist. It's antipsychotic activity is thought to be related to blocks postsynaptic dopamine receptors in the CNS.
AbsorptionFairly slow and incomplete after oral administration
Volume of distributionNot Available
Protein bindingHighly bound to plasma proteins (>95%)
Metabolism

Mainly hepatic

Route of eliminationNot Available
Half life19 to 39 hours
ClearanceNot Available
ToxicityLD50=300 mk/kg (Oral in mice); LD50=791 mg/kg (Oral in rats); LD50=87 mk/kg (IV in mice); LD50=37 mg/kg (IV in rats)
Affected organisms
  • Humans and other mammals
PathwaysNot Available
SNP Mediated EffectsNot Available
SNP Mediated Adverse Drug ReactionsNot Available
ADMET
Predicted ADMET features
PropertyValueProbability
Human Intestinal Absorption+0.9825
Blood Brain Barrier+0.9778
Caco-2 permeable-0.5438
P-glycoprotein substrateSubstrate0.8762
P-glycoprotein inhibitor IInhibitor0.92
P-glycoprotein inhibitor IIInhibitor0.859
Renal organic cation transporterInhibitor0.5065
CYP450 2C9 substrateNon-substrate0.8084
CYP450 2D6 substrateSubstrate0.804
CYP450 3A4 substrateNon-substrate0.6921
CYP450 1A2 substrateInhibitor0.9107
CYP450 2C9 substrateNon-inhibitor0.9071
CYP450 2D6 substrateInhibitor0.8933
CYP450 2C19 substrateNon-inhibitor0.9026
CYP450 3A4 substrateInhibitor0.5657
CYP450 inhibitory promiscuityHigh CYP Inhibitory Promiscuity0.7748
Ames testNon AMES toxic0.828
CarcinogenicityNon-carcinogens0.8985
BiodegradationNot ready biodegradable1.0
Rat acute toxicity2.8385 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.6624
hERG inhibition (predictor II)Inhibitor0.7962
Pharmacoeconomics
ManufacturersNot Available
PackagersNot Available
Dosage formsNot Available
Prices
Unit descriptionCostUnit
Fluanxol Depot 100 mg/ml39.79USD ml
Fluanxol Depot 20 mg/ml7.96USD ml
Fluanxol 3 mg Tablet0.59USD tablet
Fluanxol 0.5 mg Tablet0.27USD tablet
DrugBank does not sell nor buy drugs. Pricing information is supplied for informational purposes only.
PatentsNot Available
Properties
StateSolid
Experimental Properties
PropertyValueSource
water solubility0.000346 mg/mlNot Available
logP4.51HANSCH,C ET AL. (1995)
Predicted Properties
PropertyValueSource
Water Solubility0.003 mg/mLALOGPS
logP4.12ALOGPS
logP3.54ChemAxon
logS-5.2ALOGPS
pKa (Strongest Acidic)15.59ChemAxon
pKa (Strongest Basic)8.51ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area26.71 Å2ChemAxon
Rotatable Bond Count6ChemAxon
Refractivity120.93 m3·mol-1ChemAxon
Polarizability45.28 Å3ChemAxon
Number of Rings4ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Mass Spec (NIST)Not Available
SpectraNot Available
References
Synthesis Reference

Smith Kline & French Laboratories; British Patent 925,538; May 8, 1963.
Craig, P.N. and Zirkle, C.L.; U.S. Patent 3,282,930; November 1, 1966; assigned to Smith Kline & French Laboratories.

General ReferenceNot Available
External Links
ATC CodesN05AF01
AHFS CodesNot Available
PDB EntriesNot Available
FDA labelNot Available
MSDSNot Available
Interactions
Drug Interactions
Drug
AclidiniumMay enhance the anticholinergic effect of Anticholinergic Agents.
AlmotriptanSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
AmisulprideAntipsychotic Agents may enhance the adverse/toxic effect of Amisulpride.
AmitriptylineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
AmoxapineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
AmphetamineMay diminish the stimulatory effect of Amphetamines.
BenzphetamineMay diminish the stimulatory effect of Amphetamines.
BuprenorphineCNS Depressants may enhance the CNS depressant effect of Buprenorphine.
BuspironeSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
CabergolineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
CathinoneAntipsychotic Agents may diminish the stimulatory effect of Amphetamines.
CitalopramSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
ClomipramineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
CyclobenzaprineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
DesipramineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
DesvenlafaxineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
DextroamphetamineMay diminish the stimulatory effect of Amphetamines.
DextromethorphanSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
DihydroergotamineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
DonepezilAcetylcholinesterase Inhibitors (Central) may enhance the neurotoxic (central) effect of Antipsychotic Agents. Severe extrapyramidal symptoms have occurred in some patients.
DoxylamineMay enhance the CNS depressant effect of CNS Depressants.
DronabinolMay enhance the CNS depressant effect of CNS Depressants.
DuloxetineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
EletriptanSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
Ergoloid mesylateSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
ErgonovineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
ErgotamineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
EscitalopramSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
FentanylSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
FluoxetineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
FluvoxamineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
FrovatriptanSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
GalantamineAcetylcholinesterase Inhibitors (Central) may enhance the neurotoxic (central) effect of Antipsychotic Agents. Severe extrapyramidal symptoms have occurred in some patients.
HydrocodoneCNS Depressants may enhance the CNS depressant effect of Hydrocodone.
ImipramineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
IsocarboxazidSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
ItoprideAnticholinergic Agents may diminish the therapeutic effect of Itopride.
LevomilnacipranSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
LinezolidSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
LisdexamfetamineMay diminish the stimulatory effect of Amphetamines.
LithiumLithium may enhance the neurotoxic effect of Antipsychotic Agents. Lithium may decrease the serum concentration of Antipsychotic Agents. Specifically noted with chlorpromazine.
LorcaserinSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
Magnesium SulfateMay enhance the CNS depressant effect of CNS Depressants.
MaprotilineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
MethadoneSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
MethamphetamineMay diminish the stimulatory effect of Amphetamines.
MethotrimeprazineCNS Depressants may enhance the CNS depressant effect of Methotrimeprazine. Methotrimeprazine may enhance the CNS depressant effect of CNS Depressants.
MethylergometrineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
MethylphenidateMay enhance the adverse/toxic effect of Methylphenidate. Methylphenidate may enhance the adverse/toxic effect of Antipsychotic Agents.
MetoclopramideMay enhance the adverse/toxic effect of Antipsychotic Agents.
MetyrosineMetyrosine may enhance the adverse/toxic effect of Antipsychotic Agents.
MifepristoneMay enhance the QTc-prolonging effect of Highest Risk QTc-Prolonging Agents.
MilnacipranSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
MoclobemideSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
NabiloneMay enhance the CNS depressant effect of CNS Depressants.
NaratriptanSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
NefazodoneSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
NortriptylineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
OrphenadrineCNS Depressants may enhance the CNS depressant effect of Orphenadrine.
ParoxetineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
PerampanelMay enhance the CNS depressant effect of CNS Depressants.
PethidineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
PhendimetrazineMay diminish the stimulatory effect of Amphetamines.
PhenelzineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
PhentermineMay diminish the stimulatory effect of Amphetamines.
Potassium ChlorideAnticholinergic Agents may enhance the ulcerogenic effect of Potassium Chloride.
PramlintideMay enhance the anticholinergic effect of Anticholinergic Agents. These effects are specific to the GI tract.
ProcarbazineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
PromethazineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
ProtriptylineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
RasagilineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
RivastigmineAcetylcholinesterase Inhibitors (Central) may enhance the neurotoxic (central) effect of Antipsychotic Agents. Severe extrapyramidal symptoms have occurred in some patients.
RizatriptanSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
RufinamideMay enhance the adverse/toxic effect of CNS Depressants. Specifically, sleepiness and dizziness may be enhanced.
SecretinAnticholinergic Agents may diminish the therapeutic effect of Secretin.
SelegilineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
SertralineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
SulpirideAntipsychotic Agents may enhance the adverse/toxic effect of Sulpiride.
SumatriptanSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
SuvorexantCNS Depressants may enhance the CNS depressant effect of Suvorexant.
TapentadolMay enhance the CNS depressant effect of CNS Depressants.
Tedizolid PhosphateSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
TetrabenazineTetrabenazine may enhance the adverse/toxic effect of Antipsychotic Agents.
ThalidomideCNS Depressants may enhance the CNS depressant effect of Thalidomide.
TiotropiumAnticholinergic Agents may enhance the anticholinergic effect of Tiotropium.
TopiramateAnticholinergic Agents may enhance the adverse/toxic effect of Topiramate.
TramadolSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
TranylcypromineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
TrimipramineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
VenlafaxineSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
VilazodoneSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
ZolmitriptanSerotonin Modulators may enhance the adverse/toxic effect of Antipsychotic Agents. Specifically, serotonin modulators may enhance dopamine blockade, possibly increasing the risk for neuroleptic malignant syndrome. Antipsychotic Agents may enhance the serotonergic effect of Serotonin Modulators. This could result in serotonin syndrome.
ZolpidemCNS Depressants may enhance the CNS depressant effect of Zolpidem.
Food Interactions
  • Avoid alcohol.
  • Take with food to reduce irritation.

Targets

1. D(2) dopamine receptor

Kind: protein

Organism: Human

Pharmacological action: yes

Actions: antagonist

Components

Name UniProt ID Details
D(2) dopamine receptor P14416 Details

References:

  1. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. Pubmed
  2. Seeman P: Atypical antipsychotics: mechanism of action. Can J Psychiatry. 2002 Feb;47(1):27-38. Pubmed
  3. Ogren SO, Hall H, Kohler C, Magnusson O, Lindbom LO, Angeby K, Florvall L: Remoxipride, a new potential antipsychotic compound with selective antidopaminergic actions in the rat brain. Eur J Pharmacol. 1984 Jul 20;102(3-4):459-74. Pubmed
  4. Arnt J: Differential effects of classical and newer antipsychotics on the hypermotility induced by two dose levels of D-amphetamine. Eur J Pharmacol. 1995 Sep 5;283(1-3):55-62. Pubmed
  5. Huettl P, Gerhardt GA, Browning MD, Masserano JM: Effects of dopamine receptor agonists and antagonists on catecholamine release in bovine chromaffin cells. J Pharmacol Exp Ther. 1991 May;257(2):567-74. Pubmed
  6. Nilsson CL, Ekman A, Hellstrand M, Eriksson E: Inverse agonism at dopamine D2 receptors. Haloperidol-induced prolactin release from GH4C1 cells transfected with the human D2 receptor is antagonized by R(-)-n-propylnorapomorphine, raclopride, and phenoxybenzamine. Neuropsychopharmacology. 1996 Jul;15(1):53-61. Pubmed
  7. Reimold M, Solbach C, Noda S, Schaefer JE, Bartels M, Beneke M, Machulla HJ, Bares R, Glaser T, Wormstall H: Occupancy of dopamine D(1), D (2) and serotonin (2A) receptors in schizophrenic patients treated with flupentixol in comparison with risperidone and haloperidol. Psychopharmacology (Berl). 2007 Feb;190(2):241-9. Epub 2006 Nov 17. Pubmed

2. 5-hydroxytryptamine receptor 2A

Kind: protein

Organism: Human

Pharmacological action: yes

Actions: antagonist

Components

Name UniProt ID Details
5-hydroxytryptamine receptor 2A P28223 Details

References:

  1. Reimold M, Solbach C, Noda S, Schaefer JE, Bartels M, Beneke M, Machulla HJ, Bares R, Glaser T, Wormstall H: Occupancy of dopamine D(1), D (2) and serotonin (2A) receptors in schizophrenic patients treated with flupentixol in comparison with risperidone and haloperidol. Psychopharmacology (Berl). 2007 Feb;190(2):241-9. Epub 2006 Nov 17. Pubmed

3. D(1A) dopamine receptor

Kind: protein

Organism: Human

Pharmacological action: yes

Actions: antagonist

Components

Name UniProt ID Details
D(1A) dopamine receptor P21728 Details

References:

  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. Pubmed
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. Pubmed
  3. Cai G, Gurdal H, Smith C, Wang HY, Friedman E: Inverse agonist properties of dopaminergic antagonists at the D(1A) dopamine receptor: uncoupling of the D(1A) dopamine receptor from G(s) protein. Mol Pharmacol. 1999 Nov;56(5):989-96. Pubmed
  4. Reimold M, Solbach C, Noda S, Schaefer JE, Bartels M, Beneke M, Machulla HJ, Bares R, Glaser T, Wormstall H: Occupancy of dopamine D(1), D (2) and serotonin (2A) receptors in schizophrenic patients treated with flupentixol in comparison with risperidone and haloperidol. Psychopharmacology (Berl). 2007 Feb;190(2):241-9. Epub 2006 Nov 17. Pubmed

4. Alpha-1A adrenergic receptor

Kind: protein

Organism: Human

Pharmacological action: yes

Actions: antagonist

Components

Name UniProt ID Details
Alpha-1A adrenergic receptor P35348 Details

References:

  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. Pubmed
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. Pubmed

5. Muscarinic acetylcholine receptor M1

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: antagonist

Components

Name UniProt ID Details
Muscarinic acetylcholine receptor M1 P11229 Details

References:

  1. Golds PR, Przyslo FR, Strange PG: The binding of some antidepressant drugs to brain muscarinic acetylcholine receptors. Br J Pharmacol. 1980 Mar;68(3):541-9. Pubmed

Enzymes

1. Aromatic-L-amino-acid decarboxylase

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inducer

Components

Name UniProt ID Details
Aromatic-L-amino-acid decarboxylase P20711 Details

References:

  1. Zhu MY, Juorio AV, Paterson IA, Boulton AA: Regulation of aromatic L-amino acid decarboxylase in rat striatal synaptosomes: effects of dopamine receptor agonists and antagonists. Br J Pharmacol. 1994 May;112(1):23-30. Pubmed

Transporters

1. Multidrug resistance protein 1

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Multidrug resistance protein 1 P08183 Details

References:

  1. Hait WN, Gesmonde JF, Murren JR, Yang JM, Chen HX, Reiss M: Terfenadine (Seldane): a new drug for restoring sensitivity to multidrug resistant cancer cells. Biochem Pharmacol. 1993 Jan 26;45(2):401-6. Pubmed
  2. Dey S, Hafkemeyer P, Pastan I, Gottesman MM: A single amino acid residue contributes to distinct mechanisms of inhibition of the human multidrug transporter by stereoisomers of the dopamine receptor antagonist flupentixol. Biochemistry. 1999 May 18;38(20):6630-9. Pubmed
  3. Hafkemeyer P, Licht T, Pastan I, Gottesman MM: Chemoprotection of hematopoietic cells by a mutant P-glycoprotein resistant to a potent chemosensitizer of multidrug-resistant cancers. Hum Gene Ther. 2000 Mar 1;11(4):555-65. Pubmed
  4. Yang JM, Vassil A, Hait WN: Involvement of phosphatidylinositol-3-kinase in membrane ruffling induced by P-glycoprotein substrates in multidrug-resistant carcinoma cells. Biochem Pharmacol. 2002 Mar 1;63(5):959-66. Pubmed
  5. Ford JM, Bruggemann EP, Pastan I, Gottesman MM, Hait WN: Cellular and biochemical characterization of thioxanthenes for reversal of multidrug resistance in human and murine cell lines. Cancer Res. 1990 Mar 15;50(6):1748-56. Pubmed
  6. Ford JM, Yang JM, Hait WN: Effect of buthionine sulfoximine on toxicity of verapamil and doxorubicin to multidrug resistant cells and to mice. Cancer Res. 1991 Jan 1;51(1):67-72. Pubmed

Comments
comments powered by Disqus
Drug created on June 13, 2005 07:24 / Updated on April 23, 2014 17:15