You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on DrugBank.
Accession NumberDB04878
TypeSmall Molecule
GroupsApproved, Investigational

Voglibose (INN and USAN) is an alpha-glucosidase inhibitor used for lowering post-prandial blood glucose levels in people with diabetes mellitus. It is made in India by Ranbaxy Labs and sold under the trade name Volix. [Wikipedia]

External Identifiers Not Available
Approved Prescription ProductsNot Available
Approved Generic Prescription ProductsNot Available
Approved Over the Counter ProductsNot Available
Unapproved/Other Products Not Available
International Brands
BasenTakeda Chemical Industries
GlustatNot Available
VocarbNot Available
VolixRanbaxy labs
Brand mixturesNot Available
SaltsNot Available
CAS number83480-29-9
WeightAverage: 267.2762
Monoisotopic: 267.131802031
Chemical FormulaC10H21NO7
OCC(CO)N[[email protected]]1C[C@](O)(CO)[C@@H](O)[[email protected]](O)[[email protected]]1O
DescriptionThis compound belongs to the class of organic compounds known as aminocyclitols and derivatives. These are cyclitols with at least one hydroxyl group replace by an amino group.
KingdomOrganic compounds
Super ClassOrganooxygen compounds
ClassAlcohols and polyols
Sub ClassCyclic alcohols and derivatives
Direct ParentAminocyclitols and derivatives
Alternative Parents
  • Aminocyclitol derivative
  • Cyclohexylamine
  • Cyclohexanol
  • Tertiary alcohol
  • Secondary alcohol
  • Polyol
  • 1,2-diol
  • 1,2-aminoalcohol
  • Secondary amine
  • Secondary aliphatic amine
  • Hydrocarbon derivative
  • Primary alcohol
  • Organonitrogen compound
  • Amine
  • Aliphatic homomonocyclic compound
Molecular FrameworkAliphatic homomonocyclic compounds
External DescriptorsNot Available
IndicationFor the treatment of diabetes. It is specifically used for lowering post-prandial blood glucose levels thereby reducing the risk of macrovascular complications.
PharmacodynamicsVoglibose, an alpha-glucosidase inhibitor, is a synthetic compound with potent and enduring therapeutic efficacies against disorders of sensory, motor and autonomic nerve systems due to diabetes mellitus. The drug was approved in Japan in 1994 for the treatment of diabetes, and it is under further investigation by Takeda for the treatment of impaired glucose tolerance. Alpha-glucosidase inhibitors are oral anti-diabetic drugs used for diabetes mellitus type 2 that work by preventing the digestion of complex carbohydrates (such as starch). Complex carbohydrates are normally converted into simple sugars (monosaccharides) which can be absorbed through the intestine. Hence, alpha-glucosidase inhibitors reduce the impact of complex carbohydrates on blood sugar.
Mechanism of actionAlpha-glucosidase inhibitors are saccharides that act as competitive inhibitors of enzymes needed to digest carbohydrates: specifically alpha-glucosidase enzymes in the brush border of the small intestines. The membrane-bound intestinal alpha-glucosidases hydrolyze oligosaccharides, trisaccharides, and disaccharides to glucose and other monosaccharides in the small intestine. Acarbose also blocks pancreatic alpha-amylase in addition to inhibiting membrane-bound alpha-glucosidases. Pancreatic alpha-amylase hydrolyzes complex starches to oligosaccharides in the lumen of the small intestine. Inhibition of these enzyme systems reduces the rate of digestion of complex carbohydrates. Less glucose is absorbed because the carbohydrates are not broken down into glucose molecules. In diabetic patients, the short-term effect of these drugs therapies is to decrease current blood glucose levels: the long term effect is a small reduction in hemoglobin-A1c level. (From Drug Therapy in Nursing, 2nd ed)
Related Articles
AbsorptionSlowly and poorly absorbed
Volume of distributionNot Available
Protein bindingNot Available

Little metabolism occurs and no metabolites have as yet been identified.

Route of eliminationNot Available
Half lifeNot Available
ClearanceNot Available
ToxicityNot Available
Affected organisms
  • Humans and other mammals
PathwaysNot Available
SNP Mediated EffectsNot Available
SNP Mediated Adverse Drug ReactionsNot Available
Predicted ADMET features
Human Intestinal Absorption+0.6431
Blood Brain Barrier-0.9478
Caco-2 permeable-0.7878
P-glycoprotein substrateNon-substrate0.6439
P-glycoprotein inhibitor INon-inhibitor0.8759
P-glycoprotein inhibitor IINon-inhibitor0.918
Renal organic cation transporterNon-inhibitor0.873
CYP450 2C9 substrateNon-substrate0.812
CYP450 2D6 substrateNon-substrate0.8224
CYP450 3A4 substrateNon-substrate0.663
CYP450 1A2 substrateNon-inhibitor0.8853
CYP450 2C9 inhibitorNon-inhibitor0.9232
CYP450 2D6 inhibitorNon-inhibitor0.9324
CYP450 2C19 inhibitorNon-inhibitor0.9288
CYP450 3A4 inhibitorNon-inhibitor0.9856
CYP450 inhibitory promiscuityLow CYP Inhibitory Promiscuity0.9737
Ames testNon AMES toxic0.9132
BiodegradationNot ready biodegradable0.8142
Rat acute toxicity1.1572 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.9395
hERG inhibition (predictor II)Non-inhibitor0.9532
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397 )
ManufacturersNot Available
PackagersNot Available
Dosage formsNot Available
PricesNot Available
PatentsNot Available
Experimental PropertiesNot Available
Predicted Properties
Water Solubility190.0 mg/mLALOGPS
pKa (Strongest Acidic)12.46ChemAxon
pKa (Strongest Basic)7.66ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count8ChemAxon
Hydrogen Donor Count8ChemAxon
Polar Surface Area153.64 Å2ChemAxon
Rotatable Bond Count5ChemAxon
Refractivity59.55 m3·mol-1ChemAxon
Polarizability26.02 Å3ChemAxon
Number of Rings1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Mass Spec (NIST)Not Available
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available
Synthesis Reference

Heinz G. Floss, Sungsook Lee, Ingo Tornus, “Valiolone, a method of preparing it, and its use to prepare acarbose and voglibose.” U.S. Patent US6150568, issued October, 1995.

General References
  1. Aso Y, Yamamoto R, Suetsugu M, Matsumoto S, Wakabayashi S, Matsutomo R, Takebayashi K, Inukai T: Comparison of the effects of pioglitazone and voglibose on circulating total and high-molecular-weight adiponectin, and on two fibrinolysis inhibitors, in patients with Type 2 diabetes. Diabet Med. 2007 Sep;24(9):962-8. Epub 2007 May 17. [PubMed:17509067 ]
  2. Kurebayashi S, Watada H, Tanaka Y, Kawasumi M, Kawamori R, Hirose T: Efficacy and adverse effects of nateglinide in early type 2 diabetes. Comparison with voglibose in a cross-over study. Endocr J. 2006 Apr;53(2):213-7. [PubMed:16618980 ]
  3. Satoh N, Shimatsu A, Yamada K, Aizawa-Abe M, Suganami T, Kuzuya H, Ogawa Y: An alpha-glucosidase inhibitor, voglibose, reduces oxidative stress markers and soluble intercellular adhesion molecule 1 in obese type 2 diabetic patients. Metabolism. 2006 Jun;55(6):786-93. [PubMed:16713439 ]
External Links
ATC CodesA10BF03
AHFS CodesNot Available
PDB EntriesNot Available
FDA labelNot Available
MSDSNot Available
Drug InteractionsNot Available
Food InteractionsNot Available


Pharmacological action
General Function:
Maltose alpha-glucosidase activity
Specific Function:
May serve as an alternate pathway for starch digestion when luminal alpha-amylase activity is reduced because of immaturity or malnutrition. May play a unique role in the digestion of malted dietary oligosaccharides used in food manufacturing.
Gene Name:
Uniprot ID:
Molecular Weight:
209850.8 Da
  1. Satoh N, Shimatsu A, Yamada K, Aizawa-Abe M, Suganami T, Kuzuya H, Ogawa Y: An alpha-glucosidase inhibitor, voglibose, reduces oxidative stress markers and soluble intercellular adhesion molecule 1 in obese type 2 diabetic patients. Metabolism. 2006 Jun;55(6):786-93. [PubMed:16713439 ]
  2. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [PubMed:11752352 ]
  3. Matsumura M, Monden T, Miyashita Y, Kawagoe Y, Shimizu H, Nakatani Y, Domeki N, Yanagi K, Ikeda S, Kasai K: Effects of changeover from voglibose to acarbose on postprandial triglycerides in type 2 diabetes mellitus patients. Adv Ther. 2009 Jun;26(6):660-6. doi: 10.1007/s12325-009-0040-7. Epub 2009 Jun 30. [PubMed:19568704 ]
  4. Abe M, Okada K, Maruyama T, Maruyama N, Matsumoto K: Combination therapy with mitiglinide and voglibose improves glycemic control in type 2 diabetic patients on hemodialysis. Expert Opin Pharmacother. 2010 Feb;11(2):169-76. doi: 10.1517/14656560903530683. [PubMed:20025554 ]
  5. Iwasa M, Kobayashi H, Yasuda S, Kawamura I, Sumi S, Yamada Y, Shiraki T, Yamaki T, Ushikoshi H, Aoyama T, Nishigaki K, Takemura G, Fujiwara T, Fujiwara H, Minatoguchi S: Antidiabetic drug voglibose is protective against ischemia-reperfusion injury through glucagon-like peptide 1 receptors and the phosphoinositide 3-kinase-Akt-endothelial nitric oxide synthase pathway in rabbits. J Cardiovasc Pharmacol. 2010 Jun;55(6):625-34. doi: 10.1097/FJC.0b013e3181dcd240. [PubMed:20351564 ]
  6. Fujimori Y, Katsuno K, Ojima K, Nakashima I, Nakano S, Ishikawa-Takemura Y, Kusama H, Isaji M: Sergliflozin etabonate, a selective SGLT2 inhibitor, improves glycemic control in streptozotocin-induced diabetic rats and Zucker fatty rats. Eur J Pharmacol. 2009 May 1;609(1-3):148-54. doi: 10.1016/j.ejphar.2009.03.007. Epub 2009 Mar 10. [PubMed:19281809 ]
comments powered by Disqus
Drug created on October 20, 2007 12:23 / Updated on August 17, 2016 12:24