Welcome to DrugBank 4.0! If you prefer, you can still go back to version 3.0.
Identification
NameVinblastine
Accession NumberDB00570  (APRD00708)
Typesmall molecule
Groupsapproved
Description

Antitumor alkaloid isolated from Vinca rosea. (Merck, 11th ed.)

Structure
Thumb
Synonyms
SynonymLanguageCode
VinblastinGermanINN
VinblastinaItalian/SpanishNot Available
VinblastineFrenchINN
VinblastinumLatinINN
VincaleukoblastineNot AvailableNot Available
Salts
Name/CAS Structure Properties
Vinblastine Sulfate
Thumb
  • InChI Key: KDQAABAKXDWYSZ-JKDPCDLQSA-N
  • Monoisotopic Mass: 908.387758716
  • Average Mass: 909.053
DBSALT000644
Brand names
NameCompany
BlastivinPharmachemie
CytoblastinCipla
LemblastineNot Available
OncostinCipla
VelbanABL Antibióticos do Brasil
VelbastinKorea United Pharm
VelbeSTADA
VinblasinTeva
VinblastinGedeon Richter
VinkoKoçak
WeibaodingHospira
XintoprostRichmond
Brand mixturesNot Available
Categories
CAS number865-21-4
WeightAverage: 810.9741
Monoisotopic: 810.420379474
Chemical FormulaC46H58N4O9
InChI KeyInChIKey=JXLYSJRDGCGARV-XQKSVPLYSA-N
InChI
InChI=1S/C46H58N4O9/c1-8-42(54)23-28-24-45(40(52)57-6,36-30(15-19-49(25-28)26-42)29-13-10-11-14-33(29)47-36)32-21-31-34(22-35(32)56-5)48(4)38-44(31)17-20-50-18-12-16-43(9-2,37(44)50)39(59-27(3)51)46(38,55)41(53)58-7/h10-14,16,21-22,28,37-39,47,54-55H,8-9,15,17-20,23-26H2,1-7H3/t28-,37+,38-,39-,42+,43-,44-,45+,46+/m1/s1
IUPAC Name
methyl (1R,9R,10S,11R,12R,19R)-11-(acetyloxy)-12-ethyl-4-[(13S,15S,17S)-17-ethyl-17-hydroxy-13-(methoxycarbonyl)-1,11-diazatetracyclo[13.3.1.0^{4,12}.0^{5,10}]nonadeca-4(12),5,7,9-tetraen-13-yl]-10-hydroxy-5-methoxy-8-methyl-8,16-diazapentacyclo[10.6.1.0^{1,9}.0^{2,7}.0^{16,19}]nonadeca-2(7),3,5,13-tetraene-10-carboxylate
SMILES
[H][C@@]12N(C)C3=C(C=C(C(OC)=C3)[C@]3(C[C@@H]4CN(C[C@](O)(CC)C4)CCC4=C3NC3=CC=CC=C43)C(=O)OC)[C@@]11CCN3CC=C[C@@](CC)([C@@H](OC(C)=O)[C@]2(O)C(=O)OC)[C@@]13[H]
Mass SpecNot Available
Taxonomy
KingdomOrganic Compounds
SuperclassAlkaloids and Derivatives
ClassRhazinilam Alkaloids
SubclassNot Available
Direct parentRhazinilam Alkaloids
Alternative parentsPlumeran-type Alkaloids; Carbazoles; Indoles; Anisoles; Tetrahydropyridines; Alkyl Aryl Ethers; Cyclohexanols; Dicarboxylic Acids and Derivatives; Piperidines; Tertiary Alcohols; Pyrroles; Pyrrolidines; Cyclic Alcohols and Derivatives; Carboxylic Acid Esters; Tertiary Amines; Enolates; Polyamines
Substituentscarbazole; indole or derivative; indole; phenol ether; anisole; cyclohexanol; tetrahydropyridine; alkyl aryl ether; benzene; dicarboxylic acid derivative; piperidine; cyclic alcohol; pyrrole; tertiary alcohol; pyrrolidine; carboxylic acid ester; tertiary amine; polyamine; enolate; ether; carboxylic acid derivative; alcohol; organonitrogen compound; amine
Classification descriptionThis compound belongs to the rhazinilam alkaloids.
Pharmacology
IndicationFor treatment of breast cancer, testicular cancer, lymphomas, neuroblastoma, Hodgkin's and non-Hodgkin's lymphomas, mycosis fungoides, histiocytosis, and Kaposi's sarcoma.
PharmacodynamicsVinblastine is a vinca alkaloid antineoplastic agent. The vinca alkaloids are structurally similar compounds comprised of 2 multiringed units: vindoline and catharanthine. The vinca alkaloids have become clinically useful since the discovery of their antitumour properties in 1959. Initially, extracts of the periwinkle plant (Catharanthus roseus) were investigated because of putative hypoglycemic properties, but were noted to cause marrow suppression in rats and antileukemic effects in vitro. Vinblastine has some immunosuppressant effect. The vinca alkaloids are considered to be cell cycle phase-specific.
Mechanism of actionThe antitumor activity of vinblastine is thought to be due primarily to inhibition of mitosis at metaphase through its interaction with tubulin. Vinblastine binds to the microtubular proteins of the mitotic spindle, leading to crystallization of the microtubule and mitotic arrest or cell death.
AbsorptionNot Available
Volume of distributionNot Available
Protein binding98-99%
Metabolism

Hepatic. Metabolism of vinblastine has been shown to be mediated by hepatic cytochrome P450 3A isoenzymes.

SubstrateEnzymesProduct
Vinblastine
DesacetylvinblastineDetails
Route of eliminationThe major route of excretion may be through the biliary system.
Half lifeTriphasic: 35 min, 53 min, and 19 hours
ClearanceNot Available
ToxicityOral, mouse: LD50 = 423 mg/kg; Oral, rat: LD50 = 305 mg/kg.
Affected organisms
  • Humans and other mammals
Pathways
PathwayCategorySMPDB ID
Vinblastine Action PathwayDrug actionSMP00436
SNP Mediated EffectsNot Available
SNP Mediated Adverse Drug ReactionsNot Available
ADMET
Predicted ADMET features
Property Value Probability
Human Intestinal Absorption + 0.9806
Blood Brain Barrier - 0.9203
Caco-2 permeable + 0.6283
P-glycoprotein substrate Substrate 0.9213
P-glycoprotein inhibitor I Inhibitor 0.7737
P-glycoprotein inhibitor II Inhibitor 0.6817
Renal organic cation transporter Non-inhibitor 0.771
CYP450 2C9 substrate Non-substrate 0.816
CYP450 2D6 substrate Non-substrate 0.9117
CYP450 3A4 substrate Substrate 0.72
CYP450 1A2 substrate Non-inhibitor 0.9198
CYP450 2C9 substrate Non-inhibitor 0.9093
CYP450 2D6 substrate Non-inhibitor 0.9231
CYP450 2C19 substrate Non-inhibitor 0.9025
CYP450 3A4 substrate Non-inhibitor 0.8149
CYP450 inhibitory promiscuity Low CYP Inhibitory Promiscuity 0.8681
Ames test Non AMES toxic 0.9132
Carcinogenicity Non-carcinogens 0.91
Biodegradation Not ready biodegradable 1.0
Rat acute toxicity 2.9111 LD50, mol/kg Not applicable
hERG inhibition (predictor I) Weak inhibitor 0.9366
hERG inhibition (predictor II) Non-inhibitor 0.5793
Pharmacoeconomics
Manufacturers
  • Eli lilly and co
  • Abraxis pharmaceutical products
  • App pharmaceuticals llc
  • Bedford laboratories div ben venue laboratories inc
  • Hospira inc
Packagers
Dosage forms
FormRouteStrength
SolutionIntravenous
Prices
Unit descriptionCostUnit
Vinblastine sulf 10 mg vial18.6USDeach
DrugBank does not sell nor buy drugs. Pricing information is supplied for informational purposes only.
PatentsNot Available
Properties
Statesolid
Experimental Properties
PropertyValueSource
melting point267 °CNot Available
water solubilityNegligibleNot Available
logP3.70SANGSTER (1994)
Predicted Properties
PropertyValueSource
water solubility1.69e-02 g/lALOGPS
logP4.22ALOGPS
logP4.18ChemAxon
logS-4.7ALOGPS
pKa (strongest acidic)10.87ChemAxon
pKa (strongest basic)8.86ChemAxon
physiological charge2ChemAxon
hydrogen acceptor count9ChemAxon
hydrogen donor count3ChemAxon
polar surface area154.1ChemAxon
rotatable bond count10ChemAxon
refractivity222.42ChemAxon
polarizability87.3ChemAxon
number of rings9ChemAxon
bioavailability1ChemAxon
rule of fiveNoChemAxon
Ghose filterNoChemAxon
Veber's ruleNoChemAxon
MDDR-like ruleYesChemAxon
Spectra
SpectraNot Available
References
Synthesis Reference

Pierre Potier, Pierre Mangeney, Nicole Langlois, Yves Langlois, “Process for the synthesis of vinblastine and leurosidine.” U.S. Patent US4305875, issued October, 1977.

US4305875
General Reference
  1. Starling D: Two ultrastructurally distinct tubulin paracrystals induced in sea-urchin eggs by vinblastine sulphate. J Cell Sci. 1976 Jan;20(1):79-89. Pubmed
External Links
ResourceLink
KEGG CompoundC07201
PubChem Compound241903
PubChem Substance46504550
ChemSpider12773
BindingDB50012278
ChEBI27375
ChEMBLCHEMBL159
Therapeutic Targets DatabaseDAP000785
PharmGKBPA451877
HETKAR
Drug Product Database2183056
RxListhttp://www.rxlist.com/cgi/generic3/vinblastine.htm
Drugs.comhttp://www.drugs.com/cdi/vinblastine.html
WikipediaVinblastine
ATC CodesL01CA01
AHFS Codes
  • 10:00.00
PDB Entries
FDA labelNot Available
MSDSshow(73.5 KB)
Interactions
Drug Interactions
Drug
AmprenavirAmprenavir, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Amprenavir is initiated, discontinued or dose changed.
AprepitantAprepitant may change levels of the chemotherapy agent, vinblastine.
AtazanavirAtazanavir, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Atazanavir is initiated, discontinued or dose changed.
ClarithromycinClarithromycin, a CYP3A4 and p-glycoprotein inhibitor, may increase the Vinblastine serum concentration and distribution in certain cells. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Clarithromycin is initiated, discontinued or dose changed.
ConivaptanConivaptan, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Conivaptan is initiated, discontinued or dose changed.
Dabigatran etexilateP-Glycoprotein inducers such as vinblastine may decrease the serum concentration of dabigatran etexilate. This combination should be avoided.
DarunavirDarunavir, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Darunavir is initiated, discontinued or dose changed.
DelavirdineDelavirdine, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Delavirdine is initiated, discontinued or dose changed.
DirithromycinDirithromycin, a CYP3A4 and p-glycoprotein inhibitor, may increase the Vinblastine serum concentration and distribution in certain cells. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Dirithromycin is initiated, discontinued or dose changed.
ErythromycinErythromycin, a CYP3A4 and p-glycoprotein inhibitor, may increase the vinblastine serum concentration and distribution in certain cells. Consider alternate therapy to avoid vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of vinblastine if erythromycin is initiated, discontinued or dose changed.
FluconazoleIncreases the effect and toxicity of anticancer agent
FosamprenavirFosamprenavir, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Fosamprenavir is initiated, discontinued or dose changed.
FosphenytoinThe antineoplasic agent decreases the effect of hydantoin
ImatinibImatinib, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Imatinib is initiated, discontinued or dose changed.
IndinavirIndinavir, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Indinavir is initiated, discontinued or dose changed.
IsoniazidIsoniazid, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Isoniazid is initiated, discontinued or dose changed.
ItraconazoleItraconazole, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Itraconazole is initiated, discontinued or dose changed.
KetoconazoleKetoconazole, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Ketoconazole is initiated, discontinued or dose changed.
LeflunomideVinblastine may increase the adverse/toxic effects of Leflunomide. This may increase the risk of hematologic toxicities such as pancytopenia, agranulocytosis and thrombocytopenia. In patients receiving Vinblastine, consider eliminating the loading dose of Leflunomide. Monitor for bone marrow suppression at least monthly during concomitant therapy.
LopinavirLopinavir, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Lopinavir is initiated, discontinued or dose changed.
MiconazoleMiconazole, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Miconazole is initiated, discontinued or dose changed.
MitomycinPotentially severe lung toxicity
NatalizumabConcomitant Vinblastine and Natalizumab therapy may increase the risk of infection. Concurrent therapy should be avoided.
NefazodoneNefazodone, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Nefazodone is initiated, discontinued or dose changed.
NelfinavirNelfinavir, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Nelfinavir is initiated, discontinued or dose changed.
NicardipineNicardipine, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Nicardipine is initiated, discontinued or dose changed.
PhenytoinThe antineoplasic agent decreases the effect of hydantoin
PosaconazolePosaconazole, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Posaconazole is initiated, discontinued or dose changed.
QuinidineQuinidine, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Quinidine is initiated, discontinued or dose changed.
QuinupristinThis combination presents an increased risk of toxicity
RitonavirRitonavir, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Ritonavir is initiated, discontinued or dose changed.
SaquinavirSaquinavir, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Saquinavir is initiated, discontinued or dose changed.
SpiramycinSpiramycin, a CYP3A4 and p-glycoprotein inhibitor, may increase the Vinblastine serum concentration and distribution in certain cells. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Spiramycin is initiated, discontinued or dose changed.
TelithromycinTelithromycin, a CYP3A4 and p-glycoprotein inhibitor, may increase the Vinblastine serum concentration and distribution in certain cells. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic and adverse effects of Vinblastine if Telithromycin is initiated, discontinued or dose changed.
TolterodineVinblastine, a CYP3A4 inhibitor, may increase the serum concentration of Tolterodine by decreasing its metabolism. Poor CYP2D6 metabolizers metabolize Tolterodine via CYP3A4. A dose adjustment of Tolterodine may be required. Monitor for changes in the therapeutic/adverse effects of Tolterodine if Vinblastine is initiated, discontinued or dose changed.
TrastuzumabTrastuzumab may increase the risk of neutropenia and anemia. Monitor closely for signs and symptoms of adverse events.
VoriconazoleVoriconazole, a strong CYP3A4 inhibitor, may decrease the metabolism of Vinblastine. Consider alternate therapy to avoid Vinblastine toxicity. Monitor for changes in the therapeutic/adverse effects of Vinblastine if Voriconazole is initiated, discontinued or dose changed.
Food InteractionsNot Available

1. Tubulin alpha-1A chain

Kind: protein

Organism: Human

Pharmacological action: yes

Actions: adduct

Components

Name UniProt ID Details
Tubulin alpha-1A chain Q71U36 Details

References:

  1. Jordan MA, Kamath K: How do microtubule-targeted drugs work? An overview. Curr Cancer Drug Targets. 2007 Dec;7(8):730-42. Pubmed
  2. Correia JJ: Effects of antimitotic agents on tubulin-nucleotide interactions. Pharmacol Ther. 1991 Nov;52(2):127-47. Pubmed
  3. Jordan A, Hadfield JA, Lawrence NJ, McGown AT: Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev. 1998 Jul;18(4):259-96. Pubmed
  4. Islam MN, Iskander MN: Microtubulin binding sites as target for developing anticancer agents. Mini Rev Med Chem. 2004 Dec;4(10):1077-104. Pubmed
  5. Gupta S, Bhattacharyya B: Antimicrotubular drugs binding to vinca domain of tubulin. Mol Cell Biochem. 2003 Nov;253(1-2):41-7. Pubmed

2. Tubulin beta chain

Kind: protein

Organism: Human

Pharmacological action: yes

Actions: adduct

Components

Name UniProt ID Details
Tubulin beta chain P07437 Details

References:

  1. Jordan MA, Kamath K: How do microtubule-targeted drugs work? An overview. Curr Cancer Drug Targets. 2007 Dec;7(8):730-42. Pubmed
  2. Correia JJ: Effects of antimitotic agents on tubulin-nucleotide interactions. Pharmacol Ther. 1991 Nov;52(2):127-47. Pubmed
  3. Jordan A, Hadfield JA, Lawrence NJ, McGown AT: Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev. 1998 Jul;18(4):259-96. Pubmed
  4. Islam MN, Iskander MN: Microtubulin binding sites as target for developing anticancer agents. Mini Rev Med Chem. 2004 Dec;4(10):1077-104. Pubmed
  5. Gupta S, Bhattacharyya B: Antimicrotubular drugs binding to vinca domain of tubulin. Mol Cell Biochem. 2003 Nov;253(1-2):41-7. Pubmed

3. Tubulin delta chain

Kind: protein

Organism: Human

Pharmacological action: yes

Actions: adduct

Components

Name UniProt ID Details
Tubulin delta chain Q9UJT1 Details

References:

  1. Jordan MA, Kamath K: How do microtubule-targeted drugs work? An overview. Curr Cancer Drug Targets. 2007 Dec;7(8):730-42. Pubmed
  2. Correia JJ: Effects of antimitotic agents on tubulin-nucleotide interactions. Pharmacol Ther. 1991 Nov;52(2):127-47. Pubmed
  3. Jordan A, Hadfield JA, Lawrence NJ, McGown AT: Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev. 1998 Jul;18(4):259-96. Pubmed
  4. Islam MN, Iskander MN: Microtubulin binding sites as target for developing anticancer agents. Mini Rev Med Chem. 2004 Dec;4(10):1077-104. Pubmed
  5. Gupta S, Bhattacharyya B: Antimicrotubular drugs binding to vinca domain of tubulin. Mol Cell Biochem. 2003 Nov;253(1-2):41-7. Pubmed

4. Tubulin gamma-1 chain

Kind: protein

Organism: Human

Pharmacological action: yes

Actions: adduct

Components

Name UniProt ID Details
Tubulin gamma-1 chain P23258 Details

References:

  1. Jordan MA, Kamath K: How do microtubule-targeted drugs work? An overview. Curr Cancer Drug Targets. 2007 Dec;7(8):730-42. Pubmed
  2. Correia JJ: Effects of antimitotic agents on tubulin-nucleotide interactions. Pharmacol Ther. 1991 Nov;52(2):127-47. Pubmed
  3. Jordan A, Hadfield JA, Lawrence NJ, McGown AT: Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev. 1998 Jul;18(4):259-96. Pubmed
  4. Islam MN, Iskander MN: Microtubulin binding sites as target for developing anticancer agents. Mini Rev Med Chem. 2004 Dec;4(10):1077-104. Pubmed
  5. Gupta S, Bhattacharyya B: Antimicrotubular drugs binding to vinca domain of tubulin. Mol Cell Biochem. 2003 Nov;253(1-2):41-7. Pubmed

5. Tubulin epsilon chain

Kind: protein

Organism: Human

Pharmacological action: yes

Actions: adduct

Components

Name UniProt ID Details
Tubulin epsilon chain Q9UJT0 Details

References:

  1. Jordan MA, Kamath K: How do microtubule-targeted drugs work? An overview. Curr Cancer Drug Targets. 2007 Dec;7(8):730-42. Pubmed
  2. Correia JJ: Effects of antimitotic agents on tubulin-nucleotide interactions. Pharmacol Ther. 1991 Nov;52(2):127-47. Pubmed
  3. Jordan A, Hadfield JA, Lawrence NJ, McGown AT: Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev. 1998 Jul;18(4):259-96. Pubmed
  4. Islam MN, Iskander MN: Microtubulin binding sites as target for developing anticancer agents. Mini Rev Med Chem. 2004 Dec;4(10):1077-104. Pubmed
  5. Gupta S, Bhattacharyya B: Antimicrotubular drugs binding to vinca domain of tubulin. Mol Cell Biochem. 2003 Nov;253(1-2):41-7. Pubmed

6. Transcription factor AP-1

Kind: protein

Organism: Human

Pharmacological action: no

Actions: other/unknown

Components

Name UniProt ID Details
Transcription factor AP-1 P05412 Details

References:

  1. Brantley-Finley C, Lyle CS, Du L, Goodwin ME, Hall T, Szwedo D, Kaushal GP, Chambers TC: The JNK, ERK and p53 pathways play distinct roles in apoptosis mediated by the antitumor agents vinblastine, doxorubicin, and etoposide. Biochem Pharmacol. 2003 Aug 1;66(3):459-69. Pubmed
  2. Bene A, Kurten RC, Chambers TC: Subcellular localization as a limiting factor for utilization of decoy oligonucleotides. Nucleic Acids Res. 2004 Oct 21;32(19):e142. Pubmed
  3. Obey TB, Lyle CS, Chambers TC: Role of c-Jun in cellular sensitivity to the microtubule inhibitor vinblastine. Biochem Biophys Res Commun. 2005 Oct 7;335(4):1179-84. Pubmed
  4. Martinez-Campa C, Casado P, Rodriguez R, Zuazua P, Garcia-Pedrero JM, Lazo PS, Ramos S: Effect of vinca alkaloids on ERalpha levels and estradiol-induced responses in MCF-7 cells. Breast Cancer Res Treat. 2006 Jul;98(1):81-9. Epub 2006 Mar 23. Pubmed
  5. Duan L, Sterba K, Kolomeichuk S, Kim H, Brown PH, Chambers TC: Inducible overexpression of c-Jun in MCF7 cells causes resistance to vinblastine via inhibition of drug-induced apoptosis and senescence at a step subsequent to mitotic arrest. Biochem Pharmacol. 2007 Feb 15;73(4):481-90. Epub 2006 Oct 29. Pubmed

1. Cytochrome P450 3A4

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: substrate inhibitor

Components

Name UniProt ID Details
Cytochrome P450 3A4 P08684 Details

References:

  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed
  2. Ekins S, Bravi G, Wikel JH, Wrighton SA: Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J Pharmacol Exp Ther. 1999 Oct;291(1):424-33. Pubmed

2. Cytochrome P450 2D6

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: substrate inhibitor

Components

Name UniProt ID Details
Cytochrome P450 2D6 P10635 Details

References:

  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed

1. Multidrug resistance protein 1

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: substrate inhibitor inducer

Components

Name UniProt ID Details
Multidrug resistance protein 1 P08183 Details

References:

  1. Arora A, Shukla Y: Modulation of vinca-alkaloid induced P-glycoprotein expression by indole-3-carbinol. Cancer Lett. 2003 Jan 28;189(2):167-73. Pubmed
  2. Gao J, Murase O, Schowen RL, Aube J, Borchardt RT: A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm Res. 2001 Feb;18(2):171-6. Pubmed
  3. Wang EJ, Casciano CN, Clement RP, Johnson WW: Active transport of fluorescent P-glycoprotein substrates: evaluation as markers and interaction with inhibitors. Biochem Biophys Res Commun. 2001 Nov 30;289(2):580-5. Pubmed
  4. Tang F, Horie K, Borchardt RT: Are MDCK cells transfected with the human MDR1 gene a good model of the human intestinal mucosa? Pharm Res. 2002 Jun;19(6):765-72. Pubmed
  5. Horie K, Tang F, Borchardt RT: Isolation and characterization of Caco-2 subclones expressing high levels of multidrug resistance protein efflux transporter. Pharm Res. 2003 Feb;20(2):161-8. Pubmed
  6. Schwab D, Fischer H, Tabatabaei A, Poli S, Huwyler J: Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery. J Med Chem. 2003 Apr 24;46(9):1716-25. Pubmed
  7. Tanigawara Y, Okamura N, Hirai M, Yasuhara M, Ueda K, Kioka N, Komano T, Hori R: Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J Pharmacol Exp Ther. 1992 Nov;263(2):840-5. Pubmed
  8. Tiberghien F, Loor F: Ranking of P-glycoprotein substrates and inhibitors by a calcein-AM fluorometry screening assay. Anticancer Drugs. 1996 Jul;7(5):568-78. Pubmed
  9. Pouliot JF, L’Heureux F, Liu Z, Prichard RK, Georges E: Reversal of P-glycoprotein-associated multidrug resistance by ivermectin. Biochem Pharmacol. 1997 Jan 10;53(1):17-25. Pubmed
  10. Smit JW, Weert B, Schinkel AH, Meijer DK: Heterologous expression of various P-glycoproteins in polarized epithelial cells induces directional transport of small (type 1) and bulky (type 2) cationic drugs. J Pharmacol Exp Ther. 1998 Jul;286(1):321-7. Pubmed
  11. Shepard RL, Winter MA, Hsaio SC, Pearce HL, Beck WT, Dantzig AH: Effect of modulators on the ATPase activity and vanadate nucleotide trapping of human P-glycoprotein. Biochem Pharmacol. 1998 Sep 15;56(6):719-27. Pubmed
  12. Golstein PE, Boom A, van Geffel J, Jacobs P, Masereel B, Beauwens R: P-glycoprotein inhibition by glibenclamide and related compounds. Pflugers Arch. 1999 Apr;437(5):652-60. Pubmed
  13. Takara K, Tanigawara Y, Komada F, Nishiguchi K, Sakaeda T, Okumura K: Cellular pharmacokinetic aspects of reversal effect of itraconazole on P-glycoprotein-mediated resistance of anticancer drugs. Biol Pharm Bull. 1999 Dec;22(12):1355-9. Pubmed
  14. Nagy H, Goda K, Fenyvesi F, Bacso Z, Szilasi M, Kappelmayer J, Lustyik G, Cianfriglia M, Szabo G Jr: Distinct groups of multidrug resistance modulating agents are distinguished by competition of P-glycoprotein-specific antibodies. Biochem Biophys Res Commun. 2004 Mar 19;315(4):942-9. Pubmed
  15. Chen C, Mireles RJ, Campbell SD, Lin J, Mills JB, Xu JJ, Smolarek TA: Differential interaction of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos. 2005 Apr;33(4):537-46. Epub 2004 Dec 22. Pubmed
  16. Yamazaki M, Neway WE, Ohe T, Chen I, Rowe JF, Hochman JH, Chiba M, Lin JH: In vitro substrate identification studies for p-glycoprotein-mediated transport: species difference and predictability of in vivo results. J Pharmacol Exp Ther. 2001 Mar;296(3):723-35. Pubmed
  17. Adachi Y, Suzuki H, Sugiyama Y: Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-glycoprotein. Pharm Res. 2001 Dec;18(12):1660-8. Pubmed
  18. Kumar S, Kwei GY, Poon GK, Iliff SA, Wang Y, Chen Q, Franklin RB, Didolkar V, Wang RW, Yamazaki M, Chiu SH, Lin JH, Pearson PG, Baillie TA: Pharmacokinetics and interactions of a novel antagonist of chemokine receptor 5 (CCR5) with ritonavir in rats and monkeys: role of CYP3A and P-glycoprotein. J Pharmacol Exp Ther. 2003 Mar;304(3):1161-71. Pubmed
  19. Atkinson DE, Greenwood SL, Sibley CP, Glazier JD, Fairbairn LJ: Role of MDR1 and MRP1 in trophoblast cells, elucidated using retroviral gene transfer. Am J Physiol Cell Physiol. 2003 Sep;285(3):C584-91. Epub 2003 Apr 30. Pubmed
  20. Troutman MD, Thakker DR: Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture models of intestinal epithelium. Pharm Res. 2003 Aug;20(8):1210-24. Pubmed
  21. Dagenais C, Graff CL, Pollack GM: Variable modulation of opioid brain uptake by P-glycoprotein in mice. Biochem Pharmacol. 2004 Jan 15;67(2):269-76. Pubmed
  22. Taipalensuu J, Tavelin S, Lazorova L, Svensson AC, Artursson P: Exploring the quantitative relationship between the level of MDR1 transcript, protein and function using digoxin as a marker of MDR1-dependent drug efflux activity. Eur J Pharm Sci. 2004 Jan;21(1):69-75. Pubmed
  23. Hunter J, Hirst BH, Simmons NL: Drug absorption limited by P-glycoprotein-mediated secretory drug transport in human intestinal epithelial Caco-2 cell layers. Pharm Res. 1993 May;10(5):743-9. Pubmed
  24. Borgnia MJ, Eytan GD, Assaraf YG: Competition of hydrophobic peptides, cytotoxic drugs, and chemosensitizers on a common P-glycoprotein pharmacophore as revealed by its ATPase activity. J Biol Chem. 1996 Feb 9;271(6):3163-71. Pubmed
  25. Dantzig AH, Shepard RL, Law KL, Tabas L, Pratt S, Gillespie JS, Binkley SN, Kuhfeld MT, Starling JJ, Wrighton SA: Selectivity of the multidrug resistance modulator, LY335979, for P-glycoprotein and effect on cytochrome P-450 activities. J Pharmacol Exp Ther. 1999 Aug;290(2):854-62. Pubmed
  26. Lecureur V, Sun D, Hargrove P, Schuetz EG, Kim RB, Lan LB, Schuetz JD: Cloning and expression of murine sister of P-glycoprotein reveals a more discriminating transporter than MDR1/P-glycoprotein. Mol Pharmacol. 2000 Jan;57(1):24-35. Pubmed
  27. Fedoruk MN, Gimenez-Bonafe P, Guns ES, Mayer LD, Nelson CC: P-glycoprotein increases the efflux of the androgen dihydrotestosterone and reduces androgen responsive gene activity in prostate tumor cells. Prostate. 2004 Apr 1;59(1):77-90. Pubmed
  28. Takara K, Sakaeda T, Kakumoto M, Tanigawara Y, Kobayashi H, Okumura K, Ohnishi N, Yokoyama T: Effects of alpha-adrenoceptor antagonist doxazosin on MDR1-mediated multidrug resistance and transcellular transport. Oncol Res. 2009;17(11-12):527-33. Pubmed
  29. Jutabha P, Wempe MF, Anzai N, Otomo J, Kadota T, Endou H: Xenopus laevis oocytes expressing human P-glycoprotein: probing trans- and cis-inhibitory effects on [3H]vinblastine and [3H]digoxin efflux. Pharmacol Res. 2010 Jan;61(1):76-84. Epub 2009 Jul 21. Pubmed
  30. Kugawa F, Suzuki T, Miyata M, Tomono K, Tamanoi F: Construction of a model cell line for the assay of MDR1 (multi drug resistance gene-1) substrates/inhibitors using HeLa cells. Pharmazie. 2009 May;64(5):296-300. Pubmed
  31. Woodahl EL, Crouthamel MH, Bui T, Shen DD, Ho RJ: MDR1 (ABCB1) G1199A (Ser400Asn) polymorphism alters transepithelial permeability and sensitivity to anticancer agents. Cancer Chemother Pharmacol. 2009 Jun;64(1):183-8. Epub 2009 Jan 4. Pubmed
  32. Ekins S, Kim RB, Leake BF, Dantzig AH, Schuetz EG, Lan LB, Yasuda K, Shepard RL, Winter MA, Schuetz JD, Wikel JH, Wrighton SA: Application of three-dimensional quantitative structure-activity relationships of P-glycoprotein inhibitors and substrates. Mol Pharmacol. 2002 May;61(5):974-81. Pubmed
  33. Takara K, Sakaeda T, Yagami T, Kobayashi H, Ohmoto N, Horinouchi M, Nishiguchi K, Okumura K: Cytotoxic effects of 27 anticancer drugs in HeLa and MDR1-overexpressing derivative cell lines. Biol Pharm Bull. 2002 Jun;25(6):771-8. Pubmed
  34. Henning U, Loffler S, Krieger K, Klimke A: Uptake of clozapine into HL-60 promyelocytic leukaemia cells. Pharmacopsychiatry. 2002 May;35(3):90-5. Pubmed
  35. Tang F, Horie K, Borchardt RT: Are MDCK cells transfected with the human MRP2 gene a good model of the human intestinal mucosa? Pharm Res. 2002 Jun;19(6):773-9. Pubmed
  36. Yasuda K, Lan LB, Sanglard D, Furuya K, Schuetz JD, Schuetz EG: Interaction of cytochrome P450 3A inhibitors with P-glycoprotein. J Pharmacol Exp Ther. 2002 Oct;303(1):323-32. Pubmed

2. Multidrug resistance-associated protein 1

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: substrate inhibitor inducer

Components

Name UniProt ID Details
Multidrug resistance-associated protein 1 P33527 Details

References:

  1. Schrenk D, Baus PR, Ermel N, Klein C, Vorderstemann B, Kauffmann HM: Up-regulation of transporters of the MRP family by drugs and toxins. Toxicol Lett. 2001 Mar 31;120(1-3):51-7. Pubmed
  2. Loe DW, Almquist KC, Cole SP, Deeley RG: ATP-dependent 17 beta-estradiol 17-(beta-D-glucuronide) transport by multidrug resistance protein (MRP). Inhibition by cholestatic steroids. J Biol Chem. 1996 Apr 19;271(16):9683-9. Pubmed
  3. Flanagan SD, Cummins CL, Susanto M, Liu X, Takahashi LH, Benet LZ: Comparison of furosemide and vinblastine secretion from cell lines overexpressing multidrug resistance protein (P-glycoprotein) and multidrug resistance-associated proteins (MRP1 and MRP2). Pharmacology. 2002;64(3):126-34. Pubmed
  4. Yildiz M, Celik-Ozenci C, Akan S, Akan I, Sati L, Demir R, Savas B, Ozben T, Samur M, Ozdogan M, Artac M, Bozcuk H: Zoledronic acid is synergic with vinblastine to induce apoptosis in a multidrug resistance protein-1 dependent way: an in vitro study. Cell Biol Int. 2006 Mar;30(3):278-82. Epub 2006 Feb 2. Pubmed

3. Canalicular multispecific organic anion transporter 1

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: substrate inhibitor inducer

Components

Name UniProt ID Details
Canalicular multispecific organic anion transporter 1 Q92887 Details

References:

  1. Schrenk D, Baus PR, Ermel N, Klein C, Vorderstemann B, Kauffmann HM: Up-regulation of transporters of the MRP family by drugs and toxins. Toxicol Lett. 2001 Mar 31;120(1-3):51-7. Pubmed
  2. Chen C, Mireles RJ, Campbell SD, Lin J, Mills JB, Xu JJ, Smolarek TA: Differential interaction of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos. 2005 Apr;33(4):537-46. Epub 2004 Dec 22. Pubmed
  3. Ishikawa T, Muller M, Klunemann C, Schaub T, Keppler D: ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular membrane. Role of the ATP-dependent transport system for glutathione S-conjugates. J Biol Chem. 1990 Nov 5;265(31):19279-86. Pubmed
  4. Tang F, Horie K, Borchardt RT: Are MDCK cells transfected with the human MRP2 gene a good model of the human intestinal mucosa? Pharm Res. 2002 Jun;19(6):773-9. Pubmed
  5. Baltes S, Gastens AM, Fedrowitz M, Potschka H, Kaever V, Loscher W: Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology. 2007 Feb;52(2):333-46. Epub 2006 Oct 10. Pubmed

4. Multidrug resistance-associated protein 6

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Multidrug resistance-associated protein 6 O95255 Details

References:

  1. Cai J, Daoud R, Alqawi O, Georges E, Pelletier J, Gros P: Nucleotide binding and nucleotide hydrolysis properties of the ABC transporter MRP6 (ABCC6). Biochemistry. 2002 Jun 25;41(25):8058-67. Pubmed

5. Bile salt export pump

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: substrate inhibitor

Components

Name UniProt ID Details
Bile salt export pump O95342 Details

References:

  1. Wang EJ, Casciano CN, Clement RP, Johnson WW: Fluorescent substrates of sister-P-glycoprotein (BSEP) evaluated as markers of active transport and inhibition: evidence for contingent unequal binding sites. Pharm Res. 2003 Apr;20(4):537-44. Pubmed
  2. Lecureur V, Sun D, Hargrove P, Schuetz EG, Kim RB, Lan LB, Schuetz JD: Cloning and expression of murine sister of P-glycoprotein reveals a more discriminating transporter than MDR1/P-glycoprotein. Mol Pharmacol. 2000 Jan;57(1):24-35. Pubmed

6. Solute carrier family 22 member 2

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: substrate

Components

Name UniProt ID Details
Solute carrier family 22 member 2 O15244 Details

References:

  1. Pan BF, Sweet DH, Pritchard JB, Chen R, Nelson JA: A transfected cell model for the renal toxin transporter, rOCT2. Toxicol Sci. 1999 Feb;47(2):181-6. Pubmed

Comments
Drug created on June 13, 2005 07:24 / Updated on February 18, 2014 09:54