You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on DrugBank.
Identification
NameMelatonin
Accession NumberDB01065  (APRD00742, DB08189)
TypeSmall Molecule
GroupsApproved, Nutraceutical, Vet Approved
Description

Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is located in the center of the brain (rostro-dorsal to the superior colliculus) but outside the blood-brain barrier. The secretion of melatonin increases in darkness and decreases during exposure to light, thereby regulating the circadian rhythms of several biological functions, including the sleep-wake cycle. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and lowering the body temperature. Melatonin is also implicated in the regulation of mood, learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also an effective antioxidant. Most of the actions of melatonin are mediated through the binding and activation of melatonin receptors. Individuals with autism spectrum disorders (ASD) may have lower than normal levels of melatonin. A 2008 study found that unaffected parents of individuals with ASD also have lower melatonin levels, and that the deficits were associated with low activity of the ASMT gene, which encodes the last enzyme of melatonin synthesis. Reduced melatonin production has also been proposed as a likely factor in the significantly higher cancer rates in night workers.

Structure
Thumb
Synonyms
5-methoxy-N-acetyltryptamine
Melatonin
Melatonine
N-[2-(5-methoxyindol-3-yl)ethyl]acetamide
N-Acetyl-5-methoxytryptamine
External Identifiers Not Available
Prescription ProductsNot Available
Generic Prescription ProductsNot Available
Over the Counter ProductsNot Available
International Brands
NameCompany
CircadinLundbeck (France, United Kingdom), Neurim Pharmaceutical Labs (Israel, Denmark, Greece, Norway, Poland, Portugal), Nycomed (Belgium, Sweden)
Mela-TAlacer Corp. (Canada)
MelatolElisium (Argentina)
MelatoninBiomed International Products Corp., Nutravite Pharmaceuticals (2008) Inc., Viva Pharmaceutical Inc., Kripps Pharmacy Ltd., SunOpta Inc.
Nature'S HarmonySunOpta Inc. (Canada)
Revital MelatoninChin Tai Ginseng Co., Ltd (Canada)
Rx BalanceSunOpta Inc. (Canada)
Sleep RightSunOpta Inc. (Canada)
VivitasSunOpta Inc. (Canada)
Brand mixturesNot Available
SaltsNot Available
Categories
UNIIJL5DK93RCL
CAS number73-31-4
WeightAverage: 232.2783
Monoisotopic: 232.121177766
Chemical FormulaC13H16N2O2
InChI KeyInChIKey=DRLFMBDRBRZALE-UHFFFAOYSA-N
InChI
InChI=1S/C13H16N2O2/c1-9(16)14-6-5-10-8-15-13-4-3-11(17-2)7-12(10)13/h3-4,7-8,15H,5-6H2,1-2H3,(H,14,16)
IUPAC Name
N-[2-(5-methoxy-1H-indol-3-yl)ethyl]acetamide
SMILES
COC1=CC2=C(NC=C2CCNC(C)=O)C=C1
Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as serotonins. These are compounds containing a serotonin moiety, which consists of an indole that bears an aminoethyl a position 2 and a hydroxyl group at position 5.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassIndoles and derivatives
Sub ClassTryptamines and derivatives
Direct ParentSerotonins
Alternative Parents
Substituents
  • Serotonin
  • Hydroxyindole
  • Indole
  • Anisole
  • Alkyl aryl ether
  • Benzenoid
  • Substituted pyrrole
  • Heteroaromatic compound
  • Acetamide
  • Pyrrole
  • Secondary carboxylic acid amide
  • Carboxamide group
  • Azacycle
  • Ether
  • Carboxylic acid derivative
  • Carboxylic acid amide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Carbonyl group
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Pharmacology
IndicationUsed orally for jet lag, insomnia, shift-work disorder, circadian rhythm disorders in the blind (evidence for efficacy), and benzodiazepine and nicotine withdrawal. Evidence indicates that melatonin is likely effective for treating circadian rhythm sleep disorders in blind children and adults. It has received FDA orphan drug status as an oral medication for this use. A number of studies have shown that melatonin may be effective for treating sleep-wake cycle disturbances in children and adolescents with mental retardation, autism, and other central nervous system disorders. It appears to decrease the time to fall asleep in children with developmental disabilities, such as cerebral palsy, autism, and mental retardation. It may also improve secondary insomnia associated with various sleep-wake cycle disturbances. Other possible uses for which there is some evidence for include: benzodiazepine withdrawal, cluster headache, delayed sleep phase syndrome (DSPS), primary insomnia, jet lag, nicotine withdrawal, preoperative anxiety and sedation, prostate cancer, solid tumors (when combined with IL-2 therapy in certain cancers), sunburn prevention (topical use), tardive dyskinesia, thrombocytopenia associated with cancer, chemotherapy and other disorders.
PharmacodynamicsMelatonin is a hormone normally produced in the pineal gland and released into the blood. The essential amino acid L-tryptophan is a precursor in the synthesis of melatonin. It helps regulate sleep-wake cycles or the circadian rhythm. Production of melatonin is stimulated by darkness and inhibited by light. High levels of melatonin induce sleep and so consumption of the drug can be used to combat insomnia and jet lag. MT1 and MT2 receptors may be a target for the treatment of circadian and non circadian sleep disorders because of their differences in pharmacology and function within the SCN. SCN is responsible for maintaining the 24 hour cycle which regulates many different body functions ranging from sleep to immune functions
Mechanism of actionMelatonin is a derivative of tryptophan. It binds to melatonin receptor type 1A, which then acts on adenylate cylcase and the inhibition of a cAMP signal transduction pathway. Melatonin not only inhibits adenylate cyclase, but it also activates phosphilpase C. This potentiates the release of arachidonate. By binding to melatonin receptors 1 and 2, the downstream signallling cascades have various effects in the body. The melatonin receptors are G protein-coupled receptors and are expressed in various tissues of the body. There are two subtypes of the receptor in humans, melatonin receptor 1 (MT1) and melatonin receptor 2 (MT2). Melatonin and melatonin receptor agonists, on market or in clinical trials, all bind to and activate both receptor types.The binding of the agonists to the receptors has been investigated for over two decades or since 1986. It is somewhat known, but still not fully understood. When melatonin receptor agonists bind to and activate their receptors it causes numerous physiological processes. MT1 receptors are expressed in many regions of the central nervous system (CNS): suprachiasmatic nucleus of the hypothalamus (SNC), hippocampus, substantia nigra, cerebellum, central dopaminergic pathways, ventral tegmental area and nucleus accumbens. MT1 is also expressed in the retina, ovary, testis, mammary gland, coronary circulation and aorta, gallbladder, liver, kidney, skin and the immune system. MT2 receptors are expressed mainly in the CNS, also in the lung, cardiac, coronary and aortic tissue, myometrium and granulosa cells, immune cells, duodenum and adipocytes. The binding of melatonin to melatonin receptors activates a few signaling pathways. MT1 receptor activation inhibits the adenylyl cyclase and its inhibition causes a rippling effect of non activation; starting with decreasing formation of cyclic adenosine monophosphate (cAMP), and then progressing to less protein kinase A (PKA) activity, which in turn hinders the phosphorilation of cAMP responsive element-binding protein (CREB binding protein) into P-CREB. MT1 receptors also activate phospholipase C (PLC), affect ion channels and regulate ion flux inside the cell. The binding of melatonin to MT2 receptors inhibits adenylyl cyclase which decreases the formation of cAMP.[4] As well it hinders guanylyl cyclase and therefore the forming of cyclic guanosine monophosphate (cGMP). Binding to MT2 receptors probably affects PLC which increases protein kinase C (PKC) activity. Activation of the receptor can lead to ion flux inside the cell.
Related Articles
AbsorptionThe absorption and bioavailability of melatonin varies widely.
Volume of distributionNot Available
Protein bindingn/a
Metabolism

Hepatically metabolized to at least 14 identified metabolites (identified in mouse urine): 6-hydroxymelatonin glucuronide, 6-hydroxymelatonin sulfate, N-acetylserotonin glucuronide, N-acetylserotonin sulfate, 6-hydroxymelatonin, 2-oxomelatonin, 3-hydroxymelatonin, melatonin glucuronide, cyclic melatonin, cyclic N-acetylserotonin glucuronide, cyclic 6-hydroxymelatonin, 5-hydroxyindole-3-acetaldehyde, di-hydroxymelatonin and its glucuronide conjugate. 6-Hydroxymelatonin glucuronide is the major metabolite found in mouse urine (65-88% of total melatonin metabolites in urine).

SubstrateEnzymesProduct
Melatonin
6-HydroxymelatoninDetails
Melatonin
N-Acetyl-5-hydroxytryptamineDetails
6-Hydroxymelatonin
Not Available
6-Hydroxymelatonin sulfateDetails
N-Acetyl-5-hydroxytryptamine
Not Available
N-Acetyl-5-hydroxytryptamine sulfateDetails
N-Acetyl-5-hydroxytryptamine
N-Acetyl-5-hydroxytryptamine glucuronideDetails
6-Hydroxymelatonin
6-Hydroxymelatonin glucuronideDetails
Melatonin
Not Available
5-MethoxytryptamineDetails
5-Methoxytryptamine
Not Available
PinolineDetails
5-Methoxytryptamine
Not Available
BufotenineDetails
Bufotenine
Not Available
N,N-DimethyltryptamineDetails
Route of eliminationNot Available
Half life35 to 50 minutes
ClearanceNot Available
Toxicity

Generally well-tolerated when taken orally. The most common side effects, day-time drowsiness, headache and dizziness, appear to occur at the same frequency as with placebo. Other reported side effects include transient depressive symptoms, mild tremor, mild anxiety, abdominal cramps, irritability, reduced alertness, confusion, nausea, vomiting, and hypotension. Safety in Adults: Evidence indicates that it is likely safe to use in oral and parenteral forms for up to two months when used appropriately. Some evidence indicates that it can be safely used orally for up to 9 months in some patients. It is also likely safe to use topically when used appropriately. Safety in Children: Melatonin appeared to be used safely in small numbers of children enrolled in short-term clinical trials. However, concerns regarding safety in children have arisen based on their developmental state. Compared to adults over 20 years of age, people under 20 produce high levels of melatonin. Melatonin levels are inversely related to gonadal development and it is thought that exogenous administration of melatonin may adversely affect gonadal development. Safety during Pregnancy: High doses of melatonin administered orally or parenterally may inhibit ovulation. Not advised for use in individuals who are pregnant or trying to become pregnant. Safety during Lactation: Not recommended as safety has not be established.

Oral, rat: LD50 ≥3200 mg/kg

Affected organisms
  • Humans and other mammals
Pathways
PathwayCategorySMPDB ID
Tryptophan MetabolismMetabolicSMP00063
SNP Mediated EffectsNot Available
SNP Mediated Adverse Drug ReactionsNot Available
ADMET
Predicted ADMET features
PropertyValueProbability
Human Intestinal Absorption+1.0
Blood Brain Barrier+0.9928
Caco-2 permeable-0.5536
P-glycoprotein substrateSubstrate0.6188
P-glycoprotein inhibitor INon-inhibitor0.9569
P-glycoprotein inhibitor IINon-inhibitor0.6838
Renal organic cation transporterNon-inhibitor0.542
CYP450 2C9 substrateNon-substrate0.8231
CYP450 2D6 substrateSubstrate0.5062
CYP450 3A4 substrateSubstrate0.6505
CYP450 1A2 substrateInhibitor0.9304
CYP450 2C9 inhibitorNon-inhibitor0.9071
CYP450 2D6 inhibitorInhibitor0.8084
CYP450 2C19 inhibitorNon-inhibitor0.9025
CYP450 3A4 inhibitorNon-inhibitor0.7194
CYP450 inhibitory promiscuityHigh CYP Inhibitory Promiscuity0.6803
Ames testNon AMES toxic0.9132
CarcinogenicityNon-carcinogens0.9498
BiodegradationNot ready biodegradable0.8764
Rat acute toxicity1.8922 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.9631
hERG inhibition (predictor II)Non-inhibitor0.5124
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397 )
Pharmacoeconomics
ManufacturersNot Available
Packagers
Dosage formsNot Available
Prices
Unit descriptionCostUnit
Melatonin powder45.6USD g
Melatonin 3 mg tablet0.22USD tablet
Melatonin 5 mg tablet0.12USD tablet
Melatonin 5 mg tablet sl0.1USD tablet
Melatonin sublingual tablet0.09USD tablet
Melatonin 1 mg tablet0.03USD tablet
DrugBank does not sell nor buy drugs. Pricing information is supplied for informational purposes only.
PatentsNot Available
Properties
StateSolid
Experimental Properties
PropertyValueSource
melting point117 °CPhysProp
logP1.6Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.143 mg/mLALOGPS
logP1.42ALOGPS
logP1.15ChemAxon
logS-3.2ALOGPS
pKa (Strongest Acidic)15.8ChemAxon
pKa (Strongest Basic)-0.94ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area54.12 Å2ChemAxon
Rotatable Bond Count4ChemAxon
Refractivity66.28 m3·mol-1ChemAxon
Polarizability25.65 Å3ChemAxon
Number of Rings2ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Mass Spec (NIST)Download (8.2 KB)
Spectra
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies)splash10-1gz1000000-aa93967315af900a76ceView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies)splash10-3z10000000-a15ee6def3f8d75b1231View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies)splash10-2gz2000000-94ef1be9ab930060778aView in MoNA
GC-MSGC-MS Spectrum - GC-MS (2 TMS)splash10-5iz1000000-03e24298c7bd1ed4066aView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-0z90000000-f90ec9b77e1a245e35a8View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-0z00000000-49e4482c65e82ac64b66View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-0z00000000-8a4ae0fd610cca992d74View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negativesplash10-02z0000000-939a1caf5760c0ba189cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negativesplash10-1zc0000000-9e6fcea2c634ac9d85a0View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negativesplash10-1z00000000-ddd29e731a7de56c1808View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negativesplash10-3z00000000-34b4fb52810a15ea5bd6View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negativesplash10-00z0000000-5ca2df63ec2baefdae8cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positivesplash10-07z0000000-5bae6e63e9b40e60e0a4View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positivesplash10-0z30000000-529bf6d5c2091993f865View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positivesplash10-1z00000000-158a60fe696120b23b41View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positivesplash10-1z00000000-5e86b2de659ce47762c0View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positivesplash10-1z00000000-881c0d57239d56c46f2dView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-IT (LC/MSD Trap XCT, Agilent Technologies) , Positivesplash10-0z70000000-f256f78adbcbeb2464deView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-IT (LC/MSD Trap XCT, Agilent Technologies) , Positivesplash10-0z00000000-bd15d952a2fc6c5cbb23View in MoNA
MSMass Spectrum (Electron Ionization)splash10-6z20000000-45ee4fdc7acdb33dad3bView in MoNA
1D NMR1H NMR SpectrumNot Available
1D NMR1H NMR SpectrumNot Available
1D NMR13C NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
References
Synthesis Reference

Robert A. S. Welch, Keith Betteridge, “Method of stimulating cashmere growth on cashmere-producing goats using melatonin.” U.S. Patent US4855313, issued August, 1986.

US4855313
General References
  1. Boutin JA, Audinot V, Ferry G, Delagrange P: Molecular tools to study melatonin pathways and actions. Trends Pharmacol Sci. 2005 Aug;26(8):412-9. [PubMed:15992934 ]
  2. Caniato R, Filippini R, Piovan A, Puricelli L, Borsarini A, Cappelletti EM: Melatonin in plants. Adv Exp Med Biol. 2003;527:593-7. [PubMed:15206778 ]
  3. Hardeland R: Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine. 2005 Jul;27(2):119-30. [PubMed:16217125 ]
  4. Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ: Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int. 1995 Mar;35(3):627-34. [PubMed:7773197 ]
  5. Ma X, Chen C, Krausz KW, Idle JR, Gonzalez FJ: A metabolomic perspective of melatonin metabolism in the mouse. Endocrinology. 2008 Apr;149(4):1869-79. doi: 10.1210/en.2007-1412. Epub 2008 Jan 10. [PubMed:18187545 ]
  6. Reiter RJ, Acuna-Castroviejo D, Tan DX, Burkhardt S: Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann N Y Acad Sci. 2001 Jun;939:200-15. [PubMed:11462772 ]
External Links
ATC CodesN05CH01
AHFS CodesNot Available
PDB EntriesNot Available
FDA labelNot Available
MSDSDownload (72 KB)
Interactions
Drug Interactions
Drug
AmlodipineMelatonin may decrease the antihypertensive activities of Amlodipine.
ClevidipineMelatonin may decrease the antihypertensive activities of Clevidipine.
FelodipineMelatonin may decrease the antihypertensive activities of Felodipine.
IsradipineMelatonin may decrease the antihypertensive activities of Isradipine.
NicardipineMelatonin may decrease the antihypertensive activities of Nicardipine.
NifedipineMelatonin may decrease the antihypertensive activities of Nifedipine.
NimodipineMelatonin may decrease the antihypertensive activities of Nimodipine.
NisoldipineMelatonin may decrease the antihypertensive activities of Nisoldipine.
Food InteractionsNot Available

Targets

Kind
Protein
Organism
Human
Pharmacological action
yes
Actions
agonist
General Function:
Organic cyclic compound binding
Specific Function:
High affinity receptor for melatonin. Likely to mediates the reproductive and circadian actions of melatonin. The activity of this receptor is mediated by pertussis toxin sensitive G proteins that inhibit adenylate cyclase activity.
Gene Name:
MTNR1A
Uniprot ID:
P48039
Molecular Weight:
39374.315 Da
References
  1. Radogna F, Paternoster L, De Nicola M, Cerella C, Ammendola S, Bedini A, Tarzia G, Aquilano K, Ciriolo M, Ghibelli L: Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes. Toxicol Appl Pharmacol. 2009 Aug 15;239(1):37-45. doi: 10.1016/j.taap.2009.05.012. Epub 2009 May 19. [PubMed:19463840 ]
  2. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [PubMed:11752352 ]
  3. Boutin JA, Audinot V, Ferry G, Delagrange P: Molecular tools to study melatonin pathways and actions. Trends Pharmacol Sci. 2005 Aug;26(8):412-9. [PubMed:15992934 ]
  4. Hardeland R: Melatonin: signaling mechanisms of a pleiotropic agent. Biofactors. 2009 Mar-Apr;35(2):183-92. doi: 10.1002/biof.23. [PubMed:19449447 ]
  5. Srinivasan V, Singh J, Pandi-Perumal SR, Brown GM, Spence DW, Cardinali DP: Jet lag, circadian rhythm sleep disturbances, and depression: the role of melatonin and its analogs. Adv Ther. 2010 Nov;27(11):796-813. doi: 10.1007/s12325-010-0065-y. Epub 2010 Sep 6. [PubMed:20827520 ]
  6. Carocci A, Catalano A, Lovece A, Lentini G, Duranti A, Lucini V, Pannacci M, Scaglione F, Franchini C: Design, synthesis, and pharmacological effects of structurally simple ligands for MT(1) and MT(2) melatonin receptors. Bioorg Med Chem. 2010 Sep 1;18(17):6496-511. doi: 10.1016/j.bmc.2010.06.100. Epub 2010 Jul 3. [PubMed:20674373 ]
  7. Prendergast BJ: MT1 melatonin receptors mediate somatic, behavioral, and reproductive neuroendocrine responses to photoperiod and melatonin in Siberian hamsters (Phodopus sungorus). Endocrinology. 2010 Feb;151(2):714-21. doi: 10.1210/en.2009-0710. Epub 2009 Dec 4. [PubMed:19966183 ]
Kind
Protein
Organism
Human
Pharmacological action
yes
Actions
agonist
General Function:
Melatonin receptor activity
Specific Function:
High affinity receptor for melatonin. Likely to mediates the reproductive and circadian actions of melatonin. The activity of this receptor is mediated by pertussis toxin sensitive G proteins that inhibit adenylate cyclase activity.
Gene Name:
MTNR1B
Uniprot ID:
P49286
Molecular Weight:
40187.895 Da
References
  1. Radogna F, Paternoster L, De Nicola M, Cerella C, Ammendola S, Bedini A, Tarzia G, Aquilano K, Ciriolo M, Ghibelli L: Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes. Toxicol Appl Pharmacol. 2009 Aug 15;239(1):37-45. doi: 10.1016/j.taap.2009.05.012. Epub 2009 May 19. [PubMed:19463840 ]
  2. Boutin JA, Audinot V, Ferry G, Delagrange P: Molecular tools to study melatonin pathways and actions. Trends Pharmacol Sci. 2005 Aug;26(8):412-9. [PubMed:15992934 ]
  3. Hardeland R: Melatonin: signaling mechanisms of a pleiotropic agent. Biofactors. 2009 Mar-Apr;35(2):183-92. doi: 10.1002/biof.23. [PubMed:19449447 ]
  4. Srinivasan V, Singh J, Pandi-Perumal SR, Brown GM, Spence DW, Cardinali DP: Jet lag, circadian rhythm sleep disturbances, and depression: the role of melatonin and its analogs. Adv Ther. 2010 Nov;27(11):796-813. doi: 10.1007/s12325-010-0065-y. Epub 2010 Sep 6. [PubMed:20827520 ]
  5. Carocci A, Catalano A, Lovece A, Lentini G, Duranti A, Lucini V, Pannacci M, Scaglione F, Franchini C: Design, synthesis, and pharmacological effects of structurally simple ligands for MT(1) and MT(2) melatonin receptors. Bioorg Med Chem. 2010 Sep 1;18(17):6496-511. doi: 10.1016/j.bmc.2010.06.100. Epub 2010 Jul 3. [PubMed:20674373 ]
  6. Prendergast BJ: MT1 melatonin receptors mediate somatic, behavioral, and reproductive neuroendocrine responses to photoperiod and melatonin in Siberian hamsters (Phodopus sungorus). Endocrinology. 2010 Feb;151(2):714-21. doi: 10.1210/en.2009-0710. Epub 2009 Dec 4. [PubMed:19966183 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
antagonist
General Function:
Zinc ion binding
Specific Function:
Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription fact...
Gene Name:
ESR1
Uniprot ID:
P03372
Molecular Weight:
66215.45 Da
References
  1. del Rio B, Garcia Pedrero JM, Martinez-Campa C, Zuazua P, Lazo PS, Ramos S: Melatonin, an endogenous-specific inhibitor of estrogen receptor alpha via calmodulin. J Biol Chem. 2004 Sep 10;279(37):38294-302. Epub 2004 Jun 30. [PubMed:15229223 ]
  2. Yoo YM, Jeung EB: Melatonin-induced estrogen receptor alpha-mediated calbindin-D9k expression plays a role in H2O2-mediated cell death in rat pituitary GH3 cells. J Pineal Res. 2009 Nov;47(4):301-7. doi: 10.1111/j.1600-079X.2009.00714.x. Epub 2009 Oct 1. [PubMed:19796047 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
agonist
General Function:
Zinc ion binding
Specific Function:
Nuclear receptor that binds DNA as a monomer to ROR response elements (RORE) containing a single core motif half-site 5'-AGGTCA-3' preceded by a short A-T-rich sequence. Considered to have intrinsic transcriptional activity, have some natural ligands such as all-trans retinoic acid (ATRA) and other retinoids which act as inverse agonists repressing the transcriptional activity. Required for nor...
Gene Name:
RORB
Uniprot ID:
Q92753
Molecular Weight:
53219.385 Da
References
  1. Becker-Andre M, Wiesenberg I, Schaeren-Wiemers N, Andre E, Missbach M, Saurat JH, Carlberg C: Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem. 1994 Nov 18;269(46):28531-4. [PubMed:7961794 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
General Function:
Titin binding
Specific Function:
Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins by Ca(2+). Among the enzymes to be stimulated by the calmodulin-Ca(2+) complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis.
Gene Name:
CALM1
Uniprot ID:
P62158
Molecular Weight:
16837.47 Da
References
  1. del Rio B, Garcia Pedrero JM, Martinez-Campa C, Zuazua P, Lazo PS, Ramos S: Melatonin, an endogenous-specific inhibitor of estrogen receptor alpha via calmodulin. J Biol Chem. 2004 Sep 10;279(37):38294-302. Epub 2004 Jun 30. [PubMed:15229223 ]
  2. Radogna F, Paternoster L, De Nicola M, Cerella C, Ammendola S, Bedini A, Tarzia G, Aquilano K, Ciriolo M, Ghibelli L: Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes. Toxicol Appl Pharmacol. 2009 Aug 15;239(1):37-45. doi: 10.1016/j.taap.2009.05.012. Epub 2009 May 19. [PubMed:19463840 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
inhibitor
General Function:
Peroxidase activity
Specific Function:
Part of the host defense system of polymorphonuclear leukocytes. It is responsible for microbicidal activity against a wide range of organisms. In the stimulated PMN, MPO catalyzes the production of hypohalous acids, primarily hypochlorous acid in physiologic situations, and other toxic intermediates that greatly enhance PMN microbicidal activity.
Gene Name:
MPO
Uniprot ID:
P05164
Molecular Weight:
83867.71 Da
References
  1. Galijasevic S, Abdulhamid I, Abu-Soud HM: Melatonin is a potent inhibitor for myeloperoxidase. Biochemistry. 2008 Feb 26;47(8):2668-77. doi: 10.1021/bi702016q. Epub 2008 Feb 1. [PubMed:18237195 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
inhibitor
General Function:
Peroxidase activity
Specific Function:
Mediates tyrosine nitration of secondary granule proteins in mature resting eosinophils. Shows significant inhibitory activity towards Mycobacterium tuberculosis H37Rv by inducing bacterial fragmentation and lysis.
Gene Name:
EPX
Uniprot ID:
P11678
Molecular Weight:
81039.5 Da
References
  1. Lu T, Galijasevic S, Abdulhamid I, Abu-Soud HM: Analysis of the mechanism by which melatonin inhibits human eosinophil peroxidase. Br J Pharmacol. 2008 Jul;154(6):1308-17. doi: 10.1038/bjp.2008.173. Epub 2008 Jun 2. [PubMed:18516076 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
General Function:
Zinc ion binding
Specific Function:
Calcium-binding chaperone that promotes folding, oligomeric assembly and quality control in the endoplasmic reticulum (ER) via the calreticulin/calnexin cycle. This lectin interacts transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER. Interacts with the DNA-binding domain of NR3C1 and mediates its nuclear export. Involved in maternal gene expression ...
Gene Name:
CALR
Uniprot ID:
P27797
Molecular Weight:
48141.2 Da
References
  1. Hardeland R: Melatonin: signaling mechanisms of a pleiotropic agent. Biofactors. 2009 Mar-Apr;35(2):183-92. doi: 10.1002/biof.23. [PubMed:19449447 ]
  2. Macias M, Escames G, Leon J, Coto A, Sbihi Y, Osuna A, Acuna-Castroviejo D: Calreticulin-melatonin. An unexpected relationship. Eur J Biochem. 2003 Mar;270(5):832-40. [PubMed:12603316 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
General Function:
Protein homodimerization activity
Specific Function:
Isoform 1 catalyzes the transfer of a methyl group onto N-acetylserotonin, producing melatonin (N-acetyl-5-methoxytryptamine). Isoform 2 and isoform 3 lack enzyme activity.
Gene Name:
ASMT
Uniprot ID:
P46597
Molecular Weight:
38452.51 Da
References
  1. Minneman KP, Wurtman RJ: The pharmacology of the pineal gland. Annu Rev Pharmacol Toxicol. 1976;16:33-51. [PubMed:180879 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
General Function:
Nadph dehydrogenase (quinone) activity
Specific Function:
The enzyme apparently serves as a quinone reductase in connection with conjugation reactions of hydroquinones involved in detoxification pathways as well as in biosynthetic processes such as the vitamin K-dependent gamma-carboxylation of glutamate residues in prothrombin synthesis.
Gene Name:
NQO2
Uniprot ID:
P16083
Molecular Weight:
25918.4 Da
References
  1. Radogna F, Paternoster L, De Nicola M, Cerella C, Ammendola S, Bedini A, Tarzia G, Aquilano K, Ciriolo M, Ghibelli L: Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes. Toxicol Appl Pharmacol. 2009 Aug 15;239(1):37-45. doi: 10.1016/j.taap.2009.05.012. Epub 2009 May 19. [PubMed:19463840 ]

Enzymes

Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
substrateinhibitor
General Function:
Vitamin d 24-hydroxylase activity
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP1A1
Uniprot ID:
P04798
Molecular Weight:
58164.815 Da
References
  1. Chang TK, Chen J, Yang G, Yeung EY: Inhibition of procarcinogen-bioactivating human CYP1A1, CYP1A2 and CYP1B1 enzymes by melatonin. J Pineal Res. 2010 Jan;48(1):55-64. doi: 10.1111/j.1600-079X.2009.00724.x. Epub 2009 Nov 16. [PubMed:19919601 ]
  2. Ma X, Idle JR, Krausz KW, Gonzalez FJ: Metabolism of melatonin by human cytochromes p450. Drug Metab Dispos. 2005 Apr;33(4):489-94. Epub 2004 Dec 22. [PubMed:15616152 ]
  3. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
substrateinhibitor
General Function:
Oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Most active in catalyzing 2-hydroxylation. Caffeine is metabolized primarily by cytochrome CYP1A2 in the liver through an initial N...
Gene Name:
CYP1A2
Uniprot ID:
P05177
Molecular Weight:
58293.76 Da
References
  1. Chang TK, Chen J, Yang G, Yeung EY: Inhibition of procarcinogen-bioactivating human CYP1A1, CYP1A2 and CYP1B1 enzymes by melatonin. J Pineal Res. 2010 Jan;48(1):55-64. doi: 10.1111/j.1600-079X.2009.00724.x. Epub 2009 Nov 16. [PubMed:19919601 ]
  2. Ma X, Idle JR, Krausz KW, Gonzalez FJ: Metabolism of melatonin by human cytochromes p450. Drug Metab Dispos. 2005 Apr;33(4):489-94. Epub 2004 Dec 22. [PubMed:15616152 ]
  3. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
  4. Turpeinen M, Uusitalo J, Jalonen J, Pelkonen O: Multiple P450 substrates in a single run: rapid and comprehensive in vitro interaction assay. Eur J Pharm Sci. 2005 Jan;24(1):123-32. [PubMed:15626586 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
substrateinhibitor
General Function:
Oxygen binding
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, retinoid and xenobiotics. Preferentially oxidizes 17beta-estradiol to the carcinogenic 4-hydroxy derivative, and a variety of procarcinogenic compou...
Gene Name:
CYP1B1
Uniprot ID:
Q16678
Molecular Weight:
60845.33 Da
References
  1. Chang TK, Chen J, Yang G, Yeung EY: Inhibition of procarcinogen-bioactivating human CYP1A1, CYP1A2 and CYP1B1 enzymes by melatonin. J Pineal Res. 2010 Jan;48(1):55-64. doi: 10.1111/j.1600-079X.2009.00724.x. Epub 2009 Nov 16. [PubMed:19919601 ]
  2. Ma X, Idle JR, Krausz KW, Gonzalez FJ: Metabolism of melatonin by human cytochromes p450. Drug Metab Dispos. 2005 Apr;33(4):489-94. Epub 2004 Dec 22. [PubMed:15616152 ]
  3. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
substrate
General Function:
Steroid hydroxylase activity
Specific Function:
Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine.
Gene Name:
CYP2C19
Uniprot ID:
P33261
Molecular Weight:
55930.545 Da
References
  1. Huuhka K, Riutta A, Haataja R, Ylitalo P, Leinonen E: The effect of CYP2C19 substrate on the metabolism of melatonin in the elderly: A randomized, double-blind, placebo-controlled study. Methods Find Exp Clin Pharmacol. 2006 Sep;28(7):447-50. [PubMed:17003850 ]
  2. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
substrate
General Function:
Steroid hydroxylase activity
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenyto...
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular Weight:
55627.365 Da
References
  1. Mo SL, Zhou ZW, Yang LP, Wei MQ, Zhou SF: New insights into the structural features and functional relevance of human cytochrome P450 2C9. Part I. Curr Drug Metab. 2009 Dec;10(10):1075-126. [PubMed:20167001 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
substrate
General Function:
Protein homodimerization activity
Specific Function:
Isoform 1 catalyzes the transfer of a methyl group onto N-acetylserotonin, producing melatonin (N-acetyl-5-methoxytryptamine). Isoform 2 and isoform 3 lack enzyme activity.
Gene Name:
ASMT
Uniprot ID:
P46597
Molecular Weight:
38452.51 Da
References
  1. Minneman KP, Wurtman RJ: The pharmacology of the pineal gland. Annu Rev Pharmacol Toxicol. 1976;16:33-51. [PubMed:180879 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
substrate
General Function:
Tryptophan 2,3-dioxygenase activity
Specific Function:
Catalyzes the first and rate limiting step of the catabolism of the essential amino acid tryptophan along the kynurenine pathway (PubMed:17671174). Involved in the peripheral immune tolerance, contributing to maintain homeostasis by preventing autoimmunity or immunopathology that would result from uncontrolled and overreacting immune responses (PubMed:25691885). Tryptophan shortage inhibits T l...
Gene Name:
IDO1
Uniprot ID:
P14902
Molecular Weight:
45325.89 Da
References
  1. Ferry G, Ubeaud C, Lambert PH, Bertin S, Coge F, Chomarat P, Delagrange P, Serkiz B, Bouchet JP, Truscott RJ, Boutin JA: Molecular evidence that melatonin is enzymatically oxidized in a different manner than tryptophan: investigations with both indoleamine 2,3-dioxygenase and myeloperoxidase. Biochem J. 2005 May 15;388(Pt 1):205-15. [PubMed:15636586 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
substrateinhibitor
General Function:
Peroxidase activity
Specific Function:
Part of the host defense system of polymorphonuclear leukocytes. It is responsible for microbicidal activity against a wide range of organisms. In the stimulated PMN, MPO catalyzes the production of hypohalous acids, primarily hypochlorous acid in physiologic situations, and other toxic intermediates that greatly enhance PMN microbicidal activity.
Gene Name:
MPO
Uniprot ID:
P05164
Molecular Weight:
83867.71 Da
References
  1. Ferry G, Ubeaud C, Lambert PH, Bertin S, Coge F, Chomarat P, Delagrange P, Serkiz B, Bouchet JP, Truscott RJ, Boutin JA: Molecular evidence that melatonin is enzymatically oxidized in a different manner than tryptophan: investigations with both indoleamine 2,3-dioxygenase and myeloperoxidase. Biochem J. 2005 May 15;388(Pt 1):205-15. [PubMed:15636586 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
inhibitor
General Function:
Oxygen binding
Specific Function:
Catalyzes the formation of aromatic C18 estrogens from C19 androgens.
Gene Name:
CYP19A1
Uniprot ID:
P11511
Molecular Weight:
57882.48 Da
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]

Transporters

Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
inhibitor
General Function:
Sodium-independent organic anion transmembrane transporter activity
Specific Function:
Plays an important role in the excretion/detoxification of endogenous and exogenous organic anions, especially from the brain and kidney. Involved in the transport basolateral of steviol, fexofenadine. Transports benzylpenicillin (PCG), estrone-3-sulfate (E1S), cimetidine (CMD), 2,4-dichloro-phenoxyacetate (2,4-D), p-amino-hippurate (PAH), acyclovir (ACV) and ochratoxin (OTA).
Gene Name:
SLC22A8
Uniprot ID:
Q8TCC7
Molecular Weight:
59855.585 Da
References
  1. Ohtsuki S, Asaba H, Takanaga H, Deguchi T, Hosoya K, Otagiri M, Terasaki T: Role of blood-brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. J Neurochem. 2002 Oct;83(1):57-66. [PubMed:12358729 ]
  2. Kusuhara H, Sekine T, Utsunomiya-Tate N, Tsuda M, Kojima R, Cha SH, Sugiyama Y, Kanai Y, Endou H: Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J Biol Chem. 1999 May 7;274(19):13675-80. [PubMed:10224140 ]
Comments
comments powered by Disqus
Drug created on June 13, 2005 07:24 / Updated on September 16, 2013 17:13