Also known as: Advanced Colorectal Cancer
DrugDrug NameDrug Description
DB00650LeucovorinFolinic Acid (also known as 5-formyl tetrahydrofolic acid or leucovorin) is the 5-formyl derivative of tetrahydrofolic acid, a necessary co-factor in the body. Commercially available leucovorin is composed of a 1:1 racemic mixture of the dextrorotary and levorotary isomers, while levoleucovorin contains only the pharmacologically active levo-isomer. In vitro, the levo-isomer has been shown to be rapidly converted to the biologically available methyl-tetrahydrofolate form while the dextro form is slowly excreted by the kidneys. Despite this difference in activity, the two commercially available forms have been shown to be pharmacokinetically identical and may be used interchangeably with limited differences in efficacy or side effects (Kovoor et al, 2009). As folate analogs, leucovorin and levoleucovorin are both used to counteract the toxic effects of folic acid antagonists, such as methotrexate, which act by inhibiting the enzyme dihydrofolate reductase (DHFR). They are indicated for use as rescue therapy following use of high-dose methotrexate in the treatment of osteosarcoma or for diminishing the toxicity associated with inadvertent overdosage of folic acid antagonists. Injectable forms are also indicated for use in the treatment of megaloblastic anemias due to folic acid deficiency when oral therapy is not feasible and for use in combination with 5-fluorouracil to prolong survival in the palliative treatment of patients with advanced colorectal cancer. Folic acid is an essential B vitamin required by the body for the synthesis of purines, pyrimidines, and methionine before incorporation into DNA or protein. However, in order to function in this role, it must first be reduced by the enzyme dihydrofolate reductase (DHFR) into the cofactors dihydrofolate (DHF) and tetrahydrofolate (THF). This important pathway, which is required for de novo synthesis of nucleic acids and amino acids, is disrupted when high-dose methotrexate is used for cancer therapy. As methotrexate functions as a DHFR inhibitor to prevent DNA synthesis in rapidly dividing cells, it also prevents the formation of DHF and THF. This results in a deficiency of coenzymes and a resultant buildup of toxic substances that are responsible for numerous adverse side effects associated with methotrexate therapy. As levoleucovorin and leucovorin are analogs of tetrahydrofolate (THF), they are able to bypass DHFR reduction and act as a cellular replacement for the co-factor THF, thereby preventing these toxic side effects.
DB11596LevoleucovorinLevoleucovorin is the enantiomerically active form of Folinic Acid (also known as 5-formyl tetrahydrofolic acid or leucovorin). Commercially available leucovorin is composed of a 1:1 racemic mixture of the dextrorotary and levorotary isomers, while levoleucovorin contains only the pharmacologically active levo-isomer. In vitro, the levo-isomer has been shown to be rapidly converted to the biologically available methyl-tetrahydrofolate form while the dextro form is slowly excreted by the kidneys. Despite this difference in activity, the two commercially available forms have been shown to be pharmacokinetically identical and may be used interchangeably with limited differences in efficacy or side effects (Kovoor et al, 2009). As folate analogs, levoleucovorin and leucovorin are both used to counteract the toxic effects of folic acid antagonists, such as methotrexate, which act by inhibiting the enzyme dihydrofolate reductase (DHFR). They are indicated for use as rescue therapy following use of high-dose methotrexate in the treatment of osteosarcoma or for diminishing the toxicity associated with inadvertent overdosage of folic acid antagonists. Levoleucovorin, as the product Fusilev (FDA), has an additional indication for use in combination chemotherapy with 5-fluorouracil in the palliative treatment of patients with advanced metastatic colorectal cancer. Folic acid is an essential B vitamin required by the body for the synthesis of purines, pyrimidines, and methionine before incorporation into DNA or protein. However, in order to function in this role, it must first be reduced by the enzyme dihydrofolate reductase (DHFR) into the cofactors dihydrofolate (DHF) and tetrahydrofolate (THF). This important pathway, which is required for de novo synthesis of nucleic acids and amino acids, is disrupted when high-dose methotrexate is used for cancer therapy. As methotrexate functions as a DHFR inhibitor to prevent DNA synthesis in rapidly dividing cells, it also prevents the formation of DHF and THF. This results in a deficiency of coenzymes and a resultant buildup of toxic substances that are responsible for numerous adverse side effects of methotrexate therapy. As levoleucovorin and leucovorin are analogs of tetrahydrofolate (THF), they are able to bypass DHFR reduction and act as a cellular replacement for the co-factor THF, thereby preventing these toxic side effects.
DB00526OxaliplatinOxaliplatin is a platinum-based chemotherapy drug in the same family as cisplatin and carboplatin. It is typically administered in combination with fluorouracil and leucovorin in a combination known as Folfox for the treatment of colorectal cancer. Compared to cisplatin the two amine groups are replaced by cyclohexyldiamine for improved antitumour activity. The chlorine ligands are replaced by the oxalato bidentate derived from oxalic acid in order to improve water solubility. Oxaliplatin is marketed by Sanofi-Aventis under the trademark Eloxatin®.
DB00293RaltitrexedRaltitrexed (brand name Tomudex®) is a chemotherapy drug manufactured AstraZeneca Company, is an antimetabolite used in chemotherapy. It is an inhibitor of thymidylate synthase.
DrugDrug NamePhaseStatusCount
DB00112Bevacizumab1Terminated1
DB01101Capecitabine1Completed1
DB00544Fluorouracil1Terminated1
DB00619Imatinib1Terminated1
DB00762Irinotecan1Active Not Recruiting1
DB01259Lapatinib1Completed1
DB00650Leucovorin1Terminated1
DB00526Oxaliplatin1Completed1
DB00526Oxaliplatin1Terminated1
DB00112Bevacizumab1 / 2Not Yet Recruiting1
DB00002Cetuximab1 / 2Not Yet Recruiting1
DB116672'-cyano-2'-deoxy-1-(beta-D-arabinofuranosyl)cytosine2Terminated1
DB06080ABT-8692Completed1
DB00112Bevacizumab2Active Not Recruiting1
DB00112Bevacizumab2Completed1
DB01101Capecitabine2Active Not Recruiting1
DB01101Capecitabine2Unknown Status1
DB00002Cetuximab2Completed1
DB11714Durvalumab2Recruiting1
DB05494Elacytarabine2Completed1
DB11727Endostar2Unknown Status1
DB00544Fluorouracil2Completed1
DB00441Gemcitabine2Completed1
DB00762Irinotecan2Completed1
DB00650Leucovorin2Completed1
DB00563Methotrexate2Terminated1
DB00526Oxaliplatin2Active Not Recruiting1
DB00526Oxaliplatin2Completed1
DB08896Regorafenib2Recruiting1
DB01101Capecitabine3Completed1
DB00762Irinotecan3Completed1