You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on DrugBank.
Identification
NameQuinidine
Accession NumberDB00908  (APRD00136)
TypeSmall Molecule
GroupsApproved
Description

An optical isomer of quinine, extracted from the bark of the Cinchona tree and similar plant species. This alkaloid dampens the excitability of cardiac and skeletal muscles by blocking sodium and potassium currents across cellular membranes. It prolongs cellular action potential, and decreases automaticity. Quinidine also blocks muscarinic and alpha-adrenergic neurotransmission. [PubChem]

Structure
Thumb
Synonyms
SynonymLanguageCode
(+)-quinidineNot AvailableNot Available
(8R,9S)-QuinidineNot AvailableNot Available
(R)-(6-Methoxyquinolin-4-yl)((3S,4R,7S)-3-vinylquinuclidin-7-yl)methanolNot AvailableNot Available
(S)-(6-Methoxy-quinolin-4-yl)-((2R,5R)-5-vinyl-1-aza-bicyclo[2.2.2]oct-2-yl)-methanolNot AvailableNot Available
(S)-(6-Methoxyquinolin-4-yl)((2R,5R)-5-vinylquinuclidin-2-yl)methanolNot AvailableNot Available
6-Methoxy-alpha-(5-vinyl-2-quinuclidinyl)-4-quinolinemethanolNot AvailableNot Available
alpha-(6-Methoxy-4-quinolyl)-5-vinyl-2-quinuclidinemethanolNot AvailableNot Available
beta-QuinineNot AvailableNot Available
ChinidinGermanNot Available
ChinidinumNot AvailableNot Available
CIN-QUINNot AvailableNot Available
ConchininNot AvailableNot Available
ConquinineNot AvailableNot Available
KinidinNot AvailableNot Available
PitayineNot AvailableNot Available
QuinidinaNot AvailableNot Available
QuinidineNot AvailableNot Available
β-quinineNot AvailableNot Available
Prescription ProductsNot Available
Generic Prescription Products
NameDosageStrengthRouteLabellerMarketing StartMarketing End
Quinidine Sulfatetablet, film coated, extended release300 mgoralTeva Pharmaceuticals USA Inc1995-01-01Not AvailableUs 0a2ef1ad1c84951dc1392a8bbe1f3cb241c91ed59e44ad8268635315440d978c
Quinidine Sulfatetablet300 mgoralEon Labs, Inc.1983-09-26Not AvailableUs 0a2ef1ad1c84951dc1392a8bbe1f3cb241c91ed59e44ad8268635315440d978c
Quinidine Sulfatetablet200 mgoralEon Labs, Inc.1976-11-24Not AvailableUs 0a2ef1ad1c84951dc1392a8bbe1f3cb241c91ed59e44ad8268635315440d978c
Quinidine Sulfatetablet200 mgoralWatson Laboratories, Inc.1976-11-24Not AvailableUs 0a2ef1ad1c84951dc1392a8bbe1f3cb241c91ed59e44ad8268635315440d978c
Quinidine Sulfatetablet300 mgoralWatson Laboratories, Inc.1981-06-09Not AvailableUs 0a2ef1ad1c84951dc1392a8bbe1f3cb241c91ed59e44ad8268635315440d978c
Quinidine Sulfatetablet200 mgoralCarilion Materials Management1976-11-24Not AvailableUs 0a2ef1ad1c84951dc1392a8bbe1f3cb241c91ed59e44ad8268635315440d978c
Over the Counter ProductsNot Available
International Brands
NameCompany
CardioquinNot Available
KinidinNot Available
Quin-ReleaseNot Available
QuinagluteNot Available
QuinalanNot Available
QuinicardineNot Available
QuinidexNot Available
Brand mixtures
Brand NameIngredients
NUEDEXTADextromethorphan + Quinidine
Salts
Name/CASStructureProperties
Quinidine Sulfate
Thumb
  • InChI Key: LOUPRKONTZGTKE-UYVJDWJCSA-N
  • Monoisotopic Mass: 324.183778022
  • Average Mass: 324.4168
DBSALT000363
Categories
CAS number56-54-2
WeightAverage: 324.4168
Monoisotopic: 324.183778022
Chemical FormulaC20H24N2O2
InChI KeyLOUPRKONTZGTKE-LHHVKLHASA-N
InChI
InChI=1S/C20H24N2O2/c1-3-13-12-22-9-7-14(13)10-19(22)20(23)16-6-8-21-18-5-4-15(24-2)11-17(16)18/h3-6,8,11,13-14,19-20,23H,1,7,9-10,12H2,2H3/t13-,14-,19+,20-/m0/s1
IUPAC Name
(S)-[(2R,4S,5R)-5-ethenyl-1-azabicyclo[2.2.2]octan-2-yl](6-methoxyquinolin-4-yl)methanol
SMILES
[H][C@@]12CCN(C[C@@H]1C=C)[C@]([H])(C2)[C@@H](O)C1=C2C=C(OC)C=CC2=NC=C1
Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as cinchona alkaloids. These are alkaloids structurally characterized by the presence of the cinchonan skeleton, which consists of a quinoline linked to an azabicyclo[2.2.2]octane moiety.
KingdomOrganic compounds
Super ClassAlkaloids and derivatives
ClassCinchona alkaloids
Sub ClassNot Available
Direct ParentCinchona alkaloids
Alternative Parents
Substituents
  • Cinchonan-skeleton
  • Hydroxyquinoline
  • Quinoline
  • Quinuclidine
  • Anisole
  • Aralkylamine
  • Alkyl aryl ether
  • Benzenoid
  • Pyridine
  • Piperidine
  • Heteroaromatic compound
  • Tertiary aliphatic amine
  • Tertiary amine
  • Secondary alcohol
  • 1,2-aminoalcohol
  • Azacycle
  • Organoheterocyclic compound
  • Ether
  • Hydrocarbon derivative
  • Aromatic alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Amine
  • Alcohol
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Pharmacology
IndicationFor the treatment of ventricular pre-excitation and cardiac dysrhythmias
PharmacodynamicsQuinidine, a hydantoin anticonvulsant, is used alone or with phenobarbital or other anticonvulsants to manage tonic-clonic seizures, psychomotor seizures, neuropathic pain syndromes including diabetic neuropathy, digitalis-induced cardiac arrhythmias, and cardiac arrhythmias associated with QT-interval prolongation.
Mechanism of actionQuinidine acts on sodium channels on the neuronal cell membrane, limiting the spread of seizure activity and reducing seizure propagation. The antiarrhythmic actions are mediated through effects on sodium channels in Purkinje fibers. Quinidine may also act on the slow inward calcium current (ICa), the rapid (IKr) and slow (IKs) components of the delayed potassium rectifier current, the inward potassium rectifier current (IKI), the ATP-sensitive potassium channel (IKATP) and Ito.
AbsorptionNot Available
Volume of distribution
  • 2 to 3 L/kg
  • 0.5 L/kg [congestive heart failure]
  • 3 to 5 L/kg [cirrhosis of the liver]
Protein binding80-88%
Metabolism
SubstrateEnzymesProduct
Quinidine
3-HydroxyquinidineDetails
Route of eliminationWhen the urine pH is less than 7, about 20% of administered quinidine appears unchanged in the urine, but this fraction drops to as little as 5% when the urine is more alkaline.
Half life6-8 hours
Clearance
  • 3 – 5 mL/min/kg [adults]
ToxicityNot Available
Affected organisms
  • Humans and other mammals
PathwaysNot Available
SNP Mediated EffectsNot Available
SNP Mediated Adverse Drug ReactionsNot Available
ADMET
Predicted ADMET features
PropertyValueProbability
Human Intestinal Absorption+0.9836
Blood Brain Barrier+0.9382
Caco-2 permeable+0.8867
P-glycoprotein substrateSubstrate0.7863
P-glycoprotein inhibitor IInhibitor0.8208
P-glycoprotein inhibitor IIInhibitor0.8387
Renal organic cation transporterInhibitor0.762
CYP450 2C9 substrateNon-substrate0.7898
CYP450 2D6 substrateNon-substrate0.9116
CYP450 3A4 substrateSubstrate0.5754
CYP450 1A2 substrateNon-inhibitor0.9045
CYP450 2C9 substrateNon-inhibitor0.9071
CYP450 2D6 substrateInhibitor0.8931
CYP450 2C19 substrateNon-inhibitor0.9026
CYP450 3A4 substrateNon-inhibitor0.8309
CYP450 inhibitory promiscuityLow CYP Inhibitory Promiscuity0.7225
Ames testNon AMES toxic0.9133
CarcinogenicityNon-carcinogens0.972
BiodegradationNot ready biodegradable1.0
Rat acute toxicity3.0596 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Strong inhibitor0.5884
hERG inhibition (predictor II)Inhibitor0.538
Pharmacoeconomics
Manufacturers
  • Eli lilly and co
  • Warner chilcott div warner lambert co
  • Bayer healthcare pharmaceuticals inc
  • Lannett co inc
  • Watson laboratories inc
  • Ascot hosp pharmaceuticals inc div travenol laboratories inc
  • Halsey drug co inc
  • Mutual pharmaceutical co inc
  • Roxane laboratories inc
  • Sandoz inc
  • Superpharm corp
  • Pharmaceutical research assoc inc
  • Solvay pharmaceuticals
  • Wyeth pharmaceuticals inc
  • Teva pharmaceuticals usa
  • Barr laboratories inc
  • Clonmel healthcare ltd
  • Contract pharmacal corp
  • Elkins sinn div ah robins co inc
  • Everylife
  • Impax laboratories inc
  • Ivax pharmaceuticals inc sub teva pharmaceuticals usa
  • King pharmaceuticals inc
  • Kv pharmaceutical co
  • Lederle laboratories div american cyanamid co
  • L perrigo co
  • Pharmavite pharmaceuticals
  • Purepac pharmaceutical co
  • Scherer laboratories inc
  • Usl pharma inc
  • Valeant pharmaceuticals international
  • Vangard laboratories inc div midway medical co
  • Vintage pharmaceuticals inc
  • West ward pharmaceutical corp
  • Whiteworth towne paulsen inc
  • Key pharmaceuticals inc sub schering plough corp
  • Schering corp
Packagers
Dosage forms
FormRouteStrength
Tabletoral200 mg
Tabletoral300 mg
Tablet, film coated, extended releaseoral300 mg
Prices
Unit descriptionCostUnit
Quinidine gluc 80 mg/ml vial2.16USD ml
Quinidine sulfate crystals1.58USD g
QuiNIDine Gluconate CR 324 mg Controlled Release Tabs0.97USD tab
Quinidine gluc er 324 mg tab0.93USD each
Quinidine Sulfate 300 mg0.41USD tablet
Quinidine sulfate 300 mg tablet0.4USD tablet
Quinidine Sulfate 200 mg0.22USD tablet
Quinidine sulfate 200 mg tablet0.21USD tablet
DrugBank does not sell nor buy drugs. Pricing information is supplied for informational purposes only.
PatentsNot Available
Properties
StateSolid
Experimental Properties
PropertyValueSource
melting point174 °CPhysProp
water solubility140 mg/L (at 25 °C)YALKOWSKY,SH & DANNENFELSER,RM (1992)
logP3.44HANSCH,C ET AL. (1995)
logS-3.37ADME Research, USCD
Caco2 permeability-4.69ADME Research, USCD
pKa8.56 (at 25 °C)SANGSTER (1994)
Predicted Properties
PropertyValueSource
Water Solubility0.334 mg/mLALOGPS
logP2.82ALOGPS
logP2.51ChemAxon
logS-3ALOGPS
pKa (Strongest Acidic)13.89ChemAxon
pKa (Strongest Basic)9.05ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area45.59 Å2ChemAxon
Rotatable Bond Count4ChemAxon
Refractivity94.69 m3·mol-1ChemAxon
Polarizability35.82 Å3ChemAxon
Number of Rings4ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Mass Spec (NIST)Download (2.96 KB)
SpectraNot Available
References
Synthesis Reference

Jean Paul REMON, Chris Vervaet, “QUININE AND QUINIDINE SALTS, METHODS FOR MAKING THEM, AND PHARMACEUTICAL FORMULATIONS COMPRISING THEM.” U.S. Patent US20090239900, issued September 24, 2009.

US20090239900
General ReferenceNot Available
External Links
ATC CodesC01BA01
AHFS Codes
  • 24:04.04.04
PDB EntriesNot Available
FDA labelDownload (615 KB)
MSDSDownload (73 KB)
Interactions
Drug Interactions
Drug
AcenocoumarolMay enhance the anticoagulant effect of Vitamin K Antagonists. Note that the INR/PT might be unchanged in the face of increased bleeding.
AcetazolamideCarbonic Anhydrase Inhibitors may decrease the excretion of QuiNIDine.
AfatinibP-glycoprotein/ABCB1 Inhibitors may increase the serum concentration of Afatinib.
Aluminum hydroxideMay decrease the excretion of QuiNIDine. Exceptions: Aluminum Hydroxide.
AmiloridePotassium-Sparing Diuretics may diminish the therapeutic effect of QuiNIDine.
AmiodaroneMay enhance the QTc-prolonging effect of Antiarrhythmic Agents (Class Ia). Amiodarone may increase the serum concentration of Antiarrhythmic Agents (Class Ia).
AmitriptylineTricyclic Antidepressants may enhance the QTc-prolonging effect of QuiNIDine. QuiNIDine may increase the serum concentration of Tricyclic Antidepressants.
AmlodipineMay increase the serum concentration of Calcium Channel Blockers (Dihydropyridine). Calcium Channel Blockers (Dihydropyridine) may decrease the serum concentration of QuiNIDine. Calcium Channel Blockers (Dihydropyridine) may increase the serum concentration of QuiNIDine.
AmoxapineTricyclic Antidepressants may enhance the QTc-prolonging effect of QuiNIDine. QuiNIDine may increase the serum concentration of Tricyclic Antidepressants.
AprepitantMay increase the serum concentration of CYP3A4 Substrates.
AripiprazoleCYP2D6 Inhibitors (Strong) may increase the serum concentration of ARIPiprazole.
AtazanavirMay increase the serum concentration of QuiNIDine.
AtomoxetineCYP2D6 Inhibitors (Strong) may increase the serum concentration of AtoMOXetine.
AtracuriumMay enhance the neuromuscular-blocking effect of Neuromuscular-Blocking Agents.
BoceprevirMay increase the serum concentration of QuiNIDine.
BosentanMay decrease the serum concentration of CYP3A4 Substrates.
BosutinibP-glycoprotein/ABCB1 Inhibitors may increase the serum concentration of Bosutinib.
Brentuximab vedotinP-glycoprotein/ABCB1 Inhibitors may increase the serum concentration of Brentuximab Vedotin. Specifically, concentrations of the active monomethyl auristatin E (MMAE) component may be increased.
Calcium carbonateMay decrease the excretion of QuiNIDine. Exceptions: Aluminum Hydroxide.
CimetidineCimetidine may increase the serum concentration of QuiNIDine.
Cisatracurium BesylateMay enhance the neuromuscular-blocking effect of Neuromuscular-Blocking Agents.
ClarithromycinMacrolide Antibiotics may enhance the QTc-prolonging effect of QuiNIDine. Macrolide Antibiotics may increase the serum concentration of QuiNIDine.
ClevidipineMay increase the serum concentration of Calcium Channel Blockers (Dihydropyridine). Calcium Channel Blockers (Dihydropyridine) may decrease the serum concentration of QuiNIDine. Calcium Channel Blockers (Dihydropyridine) may increase the serum concentration of QuiNIDine.
ClomipramineTricyclic Antidepressants may enhance the QTc-prolonging effect of QuiNIDine. QuiNIDine may increase the serum concentration of Tricyclic Antidepressants.
CodeineCYP2D6 Inhibitors (Strong) may diminish the therapeutic effect of Codeine. These CYP2D6 inhibitors may prevent the metabolic conversion of codeine to its active metabolite morphine.
ColchicineP-glycoprotein/ABCB1 Inhibitors may increase the serum concentration of Colchicine. Colchicine distribution into certain tissues (e.g., brain) may also be increased.
ConivaptanMay increase the serum concentration of CYP3A4 Substrates.
CrizotinibMay enhance the QTc-prolonging effect of QuiNIDine. Crizotinib may increase the serum concentration of QuiNIDine.
Dabigatran etexilateQuiNIDine may increase the serum concentration of Dabigatran Etexilate.
DabrafenibMay decrease the serum concentration of CYP3A4 Substrates.
DalfampridineQuiNIDine may increase the serum concentration of Dalfampridine.
DarunavirMay increase the serum concentration of QuiNIDine.
DeferasiroxMay decrease the serum concentration of CYP3A4 Substrates.
DesipramineTricyclic Antidepressants may enhance the QTc-prolonging effect of QuiNIDine. QuiNIDine may increase the serum concentration of Tricyclic Antidepressants.
DextromethorphanMay increase the serum concentration of Dextromethorphan.
DiclofenamideMay decrease the excretion of QuiNIDine. Exceptions: Brinzolamide; Dorzolamide.
DigoxinMay increase the serum concentration of Cardiac Glycosides.
DihydrocodeineQuiNIDine may diminish the analgesic effect of Dihydrocodeine.
DiltiazemDiltiazem may increase the serum concentration of QuiNIDine.
DrospirenonePotassium-Sparing Diuretics may diminish the therapeutic effect of QuiNIDine.
EnzalutamideMay decrease the serum concentration of QuiNIDine.
EplerenonePotassium-Sparing Diuretics may diminish the therapeutic effect of QuiNIDine.
EthoxzolamideMay decrease the excretion of QuiNIDine. Exceptions: Brinzolamide; Dorzolamide.
EtravirineMay decrease the serum concentration of QuiNIDine.
EverolimusP-glycoprotein/ABCB1 Inhibitors may increase the serum concentration of Everolimus.
FesoterodineCYP2D6 Inhibitors may increase serum concentrations of the active metabolite(s) of Fesoterodine.
FingolimodMay enhance the arrhythmogenic effect of Antiarrhythmic Agents (Class Ia).
FluconazoleAntifungal Agents (Azole Derivatives, Systemic) may decrease the metabolism of QuiNIDine. Applicable Isavuconazonium considerations are addressed in separate monographs.
FluvoxamineFluvoxaMINE may increase the serum concentration of QuiNIDine. QuiNIDine may increase the serum concentration of FluvoxaMINE.
FosamprenavirMay increase the serum concentration of QuiNIDine.
FosaprepitantMay increase the serum concentration of CYP3A4 Substrates.
FosphenytoinMay enhance the QTc-prolonging effect of QuiNIDine. Fosphenytoin may decrease the serum concentration of QuiNIDine.
HaloperidolHaloperidol may enhance the QTc-prolonging effect of QuiNIDine. QuiNIDine may increase the serum concentration of Haloperidol.
HydrocodoneQuiNIDine may decrease serum concentrations of the active metabolite(s) of Hydrocodone.
ImipramineTricyclic Antidepressants may enhance the QTc-prolonging effect of QuiNIDine. QuiNIDine may increase the serum concentration of Tricyclic Antidepressants.
IndinavirIndinavir may increase the serum concentration of QuiNIDine.
ItraconazoleAntifungal Agents (Azole Derivatives, Systemic) may decrease the metabolism of QuiNIDine. Applicable Isavuconazonium considerations are addressed in separate monographs.
IvacaftorMay increase the serum concentration of CYP3A4 Substrates.
KaolinMay decrease the serum concentration of QuiNIDine.
LedipasvirP-glycoprotein/ABCB1 Inhibitors may increase the serum concentration of Ledipasvir.
LomitapideCYP3A4 Inhibitors (Weak) may increase the serum concentration of Lomitapide.
LopinavirMay enhance the QTc-prolonging effect of QuiNIDine. Lopinavir may increase the serum concentration of QuiNIDine. Specifically, lopinavir/ritonavir may increase the serum concentration of quinidine.
LULICONAZOLEMay increase the serum concentration of CYP3A4 Substrates.
LurasidoneMay enhance the QTc-prolonging effect of QuiNIDine.
Magnesium oxideMay decrease the excretion of QuiNIDine. Exceptions: Aluminum Hydroxide.
MefloquineMay enhance the adverse/toxic effect of Mefloquine. Specifically, the risk for QTc-prolongation and the risk for convulsions may be increased.
MequitazineCYP2D6 Inhibitors (Strong) may increase the serum concentration of Mequitazine.
MethazolamideCarbonic Anhydrase Inhibitors may decrease the excretion of QuiNIDine.
MetoprololCYP2D6 Inhibitors may increase the serum concentration of Metoprolol.
MifepristoneMifepristone may enhance the QTc-prolonging effect of QuiNIDine. Mifepristone may increase the serum concentration of QuiNIDine.
MitotaneMay decrease the serum concentration of CYP3A4 Substrates.
NebivololCYP2D6 Inhibitors (Strong) may increase the serum concentration of Nebivolol.
NelfinavirNelfinavir may increase the serum concentration of QuiNIDine.
NifedipineMay increase the serum concentration of Calcium Channel Blockers (Dihydropyridine). Calcium Channel Blockers (Dihydropyridine) may decrease the serum concentration of QuiNIDine. Calcium Channel Blockers (Dihydropyridine) may increase the serum concentration of QuiNIDine.
NimodipineMay increase the serum concentration of Calcium Channel Blockers (Dihydropyridine). Calcium Channel Blockers (Dihydropyridine) may decrease the serum concentration of QuiNIDine. Calcium Channel Blockers (Dihydropyridine) may increase the serum concentration of QuiNIDine.
NortriptylineTricyclic Antidepressants may enhance the QTc-prolonging effect of QuiNIDine. QuiNIDine may increase the serum concentration of Tricyclic Antidepressants.
PancuroniumMay enhance the neuromuscular-blocking effect of Neuromuscular-Blocking Agents.
PazopanibP-glycoprotein/ABCB1 Inhibitors may increase the serum concentration of PAZOPanib.
PhenobarbitalMay enhance the hepatotoxic effect of QuiNIDine. PHENobarbital may decrease the serum concentration of QuiNIDine.
PhenytoinPhenytoin may decrease the serum concentration of QuiNIDine.
PimozideCYP2D6 Inhibitors (Strong) may increase the serum concentration of Pimozide.
PosaconazoleAntifungal Agents (Azole Derivatives, Systemic) may decrease the metabolism of QuiNIDine. Applicable Isavuconazonium considerations are addressed in separate monographs.
PrimidonePrimidone may decrease the serum concentration of QuiNIDine.
PropafenoneQuiNIDine may enhance the QTc-prolonging effect of Propafenone. QuiNIDine may increase the serum concentration of Propafenone.
PropranololMay increase the serum concentration of Propranolol.
ProtriptylineTricyclic Antidepressants may enhance the QTc-prolonging effect of QuiNIDine. QuiNIDine may increase the serum concentration of Tricyclic Antidepressants.
prucaloprideP-glycoprotein/ABCB1 Inhibitors may increase the serum concentration of Prucalopride.
ReserpineReserpine may enhance the adverse/toxic effect of QuiNIDine.
RifampicinRifamycin Derivatives may decrease the serum concentration of QuiNIDine.
RifapentineRifamycin Derivatives may decrease the serum concentration of QuiNIDine.
RifaximinP-glycoprotein/ABCB1 Inhibitors may increase the serum concentration of Rifaximin.
RitonavirRitonavir may increase the serum concentration of QuiNIDine.
RivaroxabanP-glycoprotein/ABCB1 Inhibitors may increase the serum concentration of Rivaroxaban.
RocuroniumMay enhance the neuromuscular-blocking effect of Neuromuscular-Blocking Agents.
SaquinavirMay enhance the QTc-prolonging effect of QuiNIDine. Saquinavir may increase the serum concentration of QuiNIDine.
SilodosinP-glycoprotein/ABCB1 Inhibitors may increase the serum concentration of Silodosin.
SiltuximabMay decrease the serum concentration of CYP3A4 Substrates.
SimeprevirMay increase the serum concentration of CYP3A4 Substrates.
Sodium bicarbonateAntacids may decrease the excretion of QuiNIDine.
SpironolactonePotassium-Sparing Diuretics may diminish the therapeutic effect of QuiNIDine.
SuccinylcholineMay enhance the neuromuscular-blocking effect of Neuromuscular-Blocking Agents.
SucralfateSucralfate may decrease the serum concentration of QuiNIDine. Specifically, sucralfate may decrease the absorption of quinidine.
SulfisoxazoleMacrolide Antibiotics may enhance the QTc-prolonging effect of QuiNIDine. Macrolide Antibiotics may increase the serum concentration of QuiNIDine.
TamoxifenCYP2D6 Inhibitors (Strong) may decrease serum concentrations of the active metabolite(s) of Tamoxifen. Specifically, strong CYP2D6 inhibitors may decrease the metabolic formation of highly potent active metabolites.
TamsulosinCYP2D6 Inhibitors (Strong) may increase the serum concentration of Tamsulosin.
TelaprevirMay enhance the adverse/toxic effect of QuiNIDine. Telaprevir may increase the serum concentration of QuiNIDine.
TelithromycinMacrolide Antibiotics may enhance the QTc-prolonging effect of QuiNIDine. Macrolide Antibiotics may increase the serum concentration of QuiNIDine.
ThioridazineCYP2D6 Inhibitors may increase the serum concentration of Thioridazine.
TipranavirMay increase the serum concentration of QuiNIDine.
TocilizumabMay decrease the serum concentration of CYP3A4 Substrates.
TopiramateCarbonic Anhydrase Inhibitors may decrease the excretion of QuiNIDine.
TopotecanP-glycoprotein/ABCB1 Inhibitors may increase the serum concentration of Topotecan.
TramadolCYP2D6 Inhibitors (Strong) may diminish the therapeutic effect of TraMADol. These CYP2D6 inhibitors may prevent the metabolic conversion of tramadol to its active metabolite that accounts for much of its opioid-like effects.
TriamterenePotassium-Sparing Diuretics may diminish the therapeutic effect of QuiNIDine.
TrimipramineTricyclic Antidepressants may enhance the QTc-prolonging effect of QuiNIDine. QuiNIDine may increase the serum concentration of Tricyclic Antidepressants.
VecuroniumMay enhance the neuromuscular-blocking effect of Neuromuscular-Blocking Agents.
VerapamilQuiNIDine may enhance the hypotensive effect of Verapamil. Verapamil may increase the serum concentration of QuiNIDine.
VoriconazoleAntifungal Agents (Azole Derivatives, Systemic) may decrease the metabolism of QuiNIDine. Applicable Isavuconazonium considerations are addressed in separate monographs.
ZonisamideCarbonic Anhydrase Inhibitors may decrease the excretion of QuiNIDine.
Food Interactions
  • Preferably take on an ampty stomach.

Targets

1. Sodium channel protein type 5 subunit alpha

Kind: protein

Organism: Human

Pharmacological action: yes

Actions: inhibitor

Components

Name UniProt ID Details
Sodium channel protein type 5 subunit alpha Q14524 Details

References:

  1. Stokoe KS, Thomas G, Goddard CA, Colledge WH, Grace AA, Huang CL: Effects of flecainide and quinidine on arrhythmogenic properties of Scn5a+/Delta murine hearts modelling long QT syndrome 3. J Physiol. 2007 Jan 1;578(Pt 1):69-84. Epub 2006 Oct 5. Pubmed
  2. Itoh H, Shimizu M, Takata S, Mabuchi H, Imoto K: A novel missense mutation in the SCN5A gene associated with Brugada syndrome bidirectionally affecting blocking actions of antiarrhythmic drugs. J Cardiovasc Electrophysiol. 2005 May;16(5):486-93. Pubmed
  3. Grant AO: Electrophysiological basis and genetics of Brugada syndrome. J Cardiovasc Electrophysiol. 2005 Sep;16 Suppl 1:S3-7. Pubmed
  4. Napolitano C, Priori SG: Brugada syndrome. Orphanet J Rare Dis. 2006 Sep 14;1:35. Pubmed
  5. Ohgo T, Okamura H, Noda T, Satomi K, Suyama K, Kurita T, Aihara N, Kamakura S, Ohe T, Shimizu W: Acute and chronic management in patients with Brugada syndrome associated with electrical storm of ventricular fibrillation. Heart Rhythm. 2007 Jun;4(6):695-700. Epub 2007 Feb 20. Pubmed
  6. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. Pubmed
  7. Sheets MF, Fozzard HA, Lipkind GM, Hanck DA: Sodium channel molecular conformations and antiarrhythmic drug affinity. Trends Cardiovasc Med. 2010 Jan;20(1):16-21. Pubmed
  8. Tella SR, Goldberg SR: Monoamine transporter and sodium channel mechanisms in the rapid pressor response to cocaine. Pharmacol Biochem Behav. 1998 Feb;59(2):305-12. Pubmed

2. Potassium channel subfamily K member 1

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Potassium channel subfamily K member 1 O00180 Details

References:

  1. Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J: TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J. 1996 Mar 1;15(5):1004-11. Pubmed
  2. Fink M, Duprat F, Lesage F, Reyes R, Romey G, Heurteaux C, Lazdunski M: Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J. 1996 Dec 16;15(24):6854-62. Pubmed

3. Potassium channel subfamily K member 6

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Potassium channel subfamily K member 6 Q9Y257 Details

References:

  1. Patel AJ, Maingret F, Magnone V, Fosset M, Lazdunski M, Honore E: TWIK-2, an inactivating 2P domain K+ channel. J Biol Chem. 2000 Sep 15;275(37):28722-30. Pubmed
  2. Guerard NC, Traebert M, Suter W, Dumotier BM: Selective block of IKs plays a significant role in MAP triangulation induced by IKr block in isolated rabbit heart. J Pharmacol Toxicol Methods. 2008 Jul-Aug;58(1):32-40. Epub 2008 Jun 8. Pubmed

4. Potassium voltage-gated channel subfamily H member 2

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Potassium voltage-gated channel subfamily H member 2 Q12809 Details

References:

  1. Po SS, Wang DW, Yang IC, Johnson JP Jr, Nie L, Bennett PB: Modulation of HERG potassium channels by extracellular magnesium and quinidine. J Cardiovasc Pharmacol. 1999 Feb;33(2):181-5. Pubmed
  2. Dong DL, Li Z, Wang HZ, Du ZM, Song WH, Yang BF: Acidification alters antiarrhythmic drug blockade of the ether-a-go-go-related Gene (HERG) Channels. Basic Clin Pharmacol Toxicol. 2004 May;94(5):209-12. Pubmed
  3. Wolpert C, Schimpf R, Giustetto C, Antzelevitch C, Cordeiro J, Dumaine R, Brugada R, Hong K, Bauersfeld U, Gaita F, Borggrefe M: Further insights into the effect of quinidine in short QT syndrome caused by a mutation in HERG. J Cardiovasc Electrophysiol. 2005 Jan;16(1):54-8. Pubmed
  4. Lin C, Ke X, Cvetanovic I, Ranade V, Somberg J: The influence of extracellular acidosis on the effect of IKr blockers. J Cardiovasc Pharmacol Ther. 2005 Mar;10(1):67-76. Pubmed
  5. Lin C, Cvetanovic I, Ke X, Ranade V, Somberg J: A mechanism for the potential proarrhythmic effect of acidosis, bradycardia, and hypokalemia on the blockade of human ether-a-go-go-related gene (HERG) channels. Am J Ther. 2005 Jul-Aug;12(4):328-36. Pubmed
  6. Guerard NC, Traebert M, Suter W, Dumotier BM: Selective block of IKs plays a significant role in MAP triangulation induced by IKr block in isolated rabbit heart. J Pharmacol Toxicol Methods. 2008 Jul-Aug;58(1):32-40. Epub 2008 Jun 8. Pubmed

Enzymes

1. Cytochrome P450 3A4

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: substrate inhibitor inducer

Components

Name UniProt ID Details
Cytochrome P450 3A4 P08684 Details

References:

  1. Ludwig E, Schmid J, Beschke K, Ebner T: Activation of human cytochrome P-450 3A4-catalyzed meloxicam 5’-methylhydroxylation by quinidine and hydroquinidine in vitro. J Pharmacol Exp Ther. 1999 Jul;290(1):1-8. Pubmed
  2. Flockhart DA. Drug Interactions: Cytochrome P450 Drug Interaction Table. Indiana University School of Medicine (2007). Accessed May 28, 2010.
  3. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed
  4. Ekins S, Bravi G, Wikel JH, Wrighton SA: Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J Pharmacol Exp Ther. 1999 Oct;291(1):424-33. Pubmed

2. Cytochrome P450 3A7

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: substrate

Components

Name UniProt ID Details
Cytochrome P450 3A7 P24462 Details

References:

  1. Flockhart DA. Drug Interactions: Cytochrome P450 Drug Interaction Table. Indiana University School of Medicine (2007). Accessed May 28, 2010.

3. Cytochrome P450 2D6

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Cytochrome P450 2D6 P10635 Details

References:

  1. Flockhart DA. Drug Interactions: Cytochrome P450 Drug Interaction Table. Indiana University School of Medicine (2007). Accessed May 28, 2010.
  2. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed

4. Cytochrome P450 1A2

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Cytochrome P450 1A2 P05177 Details

References:

  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed

5. Cytochrome P450 2E1

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: substrate

Components

Name UniProt ID Details
Cytochrome P450 2E1 P05181 Details

References:

  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed

6. Cytochrome P450 1A1

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Cytochrome P450 1A1 P04798 Details

References:

  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed
  2. van Montfoort JE, Hagenbuch B, Fattinger KE, Muller M, Groothuis GM, Meijer DK, Meier PJ: Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations. J Pharmacol Exp Ther. 1999 Oct;291(1):147-52. Pubmed
  3. van Montfoort JE, Hagenbuch B, Fattinger KE, Muller M, Groothuis GM, Meijer DK, Meier PJ: Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations. J Pharmacol Exp Ther. 1999 Oct;291(1):147-52. Pubmed
  4. van Montfoort JE, Hagenbuch B, Fattinger KE, Muller M, Groothuis GM, Meijer DK, Meier PJ: Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations. J Pharmacol Exp Ther. 1999 Oct;291(1):147-52. Pubmed
  5. van Montfoort JE, Hagenbuch B, Fattinger KE, Muller M, Groothuis GM, Meijer DK, Meier PJ: Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations. J Pharmacol Exp Ther. 1999 Oct;291(1):147-52. Pubmed
  6. van Montfoort JE, Hagenbuch B, Fattinger KE, Muller M, Groothuis GM, Meijer DK, Meier PJ: Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations. J Pharmacol Exp Ther. 1999 Oct;291(1):147-52. Pubmed
  7. van Montfoort JE, Hagenbuch B, Fattinger KE, Muller M, Groothuis GM, Meijer DK, Meier PJ: Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations. J Pharmacol Exp Ther. 1999 Oct;291(1):147-52. Pubmed
  8. van Montfoort JE, Hagenbuch B, Fattinger KE, Muller M, Groothuis GM, Meijer DK, Meier PJ: Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations. J Pharmacol Exp Ther. 1999 Oct;291(1):147-52. Pubmed
  9. van Montfoort JE, Hagenbuch B, Fattinger KE, Muller M, Groothuis GM, Meijer DK, Meier PJ: Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations. J Pharmacol Exp Ther. 1999 Oct;291(1):147-52. Pubmed
  10. van Montfoort JE, Hagenbuch B, Fattinger KE, Muller M, Groothuis GM, Meijer DK, Meier PJ: Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations. J Pharmacol Exp Ther. 1999 Oct;291(1):147-52. Pubmed
  11. van Montfoort JE, Hagenbuch B, Fattinger KE, Muller M, Groothuis GM, Meijer DK, Meier PJ: Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations. J Pharmacol Exp Ther. 1999 Oct;291(1):147-52. Pubmed
  12. van Montfoort JE, Hagenbuch B, Fattinger KE, Muller M, Groothuis GM, Meijer DK, Meier PJ: Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations. J Pharmacol Exp Ther. 1999 Oct;291(1):147-52. Pubmed

7. Cytochrome P450 2B6

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Cytochrome P450 2B6 P20813 Details

References:

  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed

8. Cytochrome P450 2C8

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: substrate

Components

Name UniProt ID Details
Cytochrome P450 2C8 P10632 Details

References:

  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed

9. Cytochrome P450 2C9

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: substrate inhibitor

Components

Name UniProt ID Details
Cytochrome P450 2C9 P11712 Details

References:

  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed

Carriers

1. Alpha-1-acid glycoprotein 1

Kind: protein

Organism: Human

Pharmacological action: unknown

Components

Name UniProt ID Details
Alpha-1-acid glycoprotein 1 P02763 Details

References:

  1. Li JH, Xu JQ, Cao XM, Ni L, Li Y, Zhuang YY, Gong JB: Influence of the ORM1 phenotypes on serum unbound concentration and protein binding of quinidine. Clin Chim Acta. 2002 Mar;317(1-2):85-92. Pubmed
  2. McCollam PL, Crouch MA, Arnaud P: Caucasian versus African-American differences in orosomucoid: potential implications for therapy. Pharmacotherapy. 1998 May-Jun;18(3):620-6. Pubmed

Transporters

1. Solute carrier family 22 member 2

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Solute carrier family 22 member 2 O15244 Details

References:

  1. Urakami Y, Akazawa M, Saito H, Okuda M, Inui K: cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol. 2002 Jul;13(7):1703-10. Pubmed
  2. Arndt P, Volk C, Gorboulev V, Budiman T, Popp C, Ulzheimer-Teuber I, Akhoundova A, Koppatz S, Bamberg E, Nagel G, Koepsell H: Interaction of cations, anions, and weak base quinine with rat renal cation transporter rOCT2 compared with rOCT1. Am J Physiol Renal Physiol. 2001 Sep;281(3):F454-68. Pubmed
  3. Urakami Y, Okuda M, Masuda S, Saito H, Inui KI: Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther. 1998 Nov;287(2):800-5. Pubmed

2. Solute carrier family 22 member 1

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: substrate inhibitor

Components

Name UniProt ID Details
Solute carrier family 22 member 1 O15245 Details

References:

  1. van Montfoort JE, Muller M, Groothuis GM, Meijer DK, Koepsell H, Meier PJ: Comparison of “type I” and “type II” organic cation transport by organic cation transporters and organic anion-transporting polypeptides. J Pharmacol Exp Ther. 2001 Jul;298(1):110-5. Pubmed
  2. Bednarczyk D, Ekins S, Wikel JH, Wright SH: Influence of molecular structure on substrate binding to the human organic cation transporter, hOCT1. Mol Pharmacol. 2003 Mar;63(3):489-98. Pubmed
  3. Zhang L, Dresser MJ, Gray AT, Yost SC, Terashita S, Giacomini KM: Cloning and functional expression of a human liver organic cation transporter. Mol Pharmacol. 1997 Jun;51(6):913-21. Pubmed
  4. Zhang L, Schaner ME, Giacomini KM: Functional characterization of an organic cation transporter (hOCT1) in a transiently transfected human cell line (HeLa). J Pharmacol Exp Ther. 1998 Jul;286(1):354-61. Pubmed
  5. Zhang L, Gorset W, Dresser MJ, Giacomini KM: The interaction of n-tetraalkylammonium compounds with a human organic cation transporter, hOCT1. J Pharmacol Exp Ther. 1999 Mar;288(3):1192-8. Pubmed
  6. Sandhu P, Lee W, Xu X, Leake BF, Yamazaki M, Stone JA, Lin JH, Pearson PG, Kim RB: Hepatic uptake of the novel antifungal agent caspofungin. Drug Metab Dispos. 2005 May;33(5):676-82. Epub 2005 Feb 16. Pubmed
  7. Sinclair CJ, Chi KD, Subramanian V, Ward KL, Green RM: Functional expression of a high affinity mammalian hepatic choline/organic cation transporter. J Lipid Res. 2000 Nov;41(11):1841-8. Pubmed
  8. Arndt P, Volk C, Gorboulev V, Budiman T, Popp C, Ulzheimer-Teuber I, Akhoundova A, Koppatz S, Bamberg E, Nagel G, Koepsell H: Interaction of cations, anions, and weak base quinine with rat renal cation transporter rOCT2 compared with rOCT1. Am J Physiol Renal Physiol. 2001 Sep;281(3):F454-68. Pubmed
  9. Urakami Y, Okuda M, Masuda S, Saito H, Inui KI: Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther. 1998 Nov;287(2):800-5. Pubmed
  10. Martel F, Vetter T, Russ H, Grundemann D, Azevedo I, Koepsell H, Schomig E: Transport of small organic cations in the rat liver. The role of the organic cation transporter OCT1. Naunyn Schmiedebergs Arch Pharmacol. 1996 Aug-Sep;354(3):320-6. Pubmed
  11. Busch AE, Quester S, Ulzheimer JC, Gorboulev V, Akhoundova A, Waldegger S, Lang F, Koepsell H: Monoamine neurotransmitter transport mediated by the polyspecific cation transporter rOCT1. FEBS Lett. 1996 Oct 21;395(2-3):153-6. Pubmed
  12. Busch AE, Quester S, Ulzheimer JC, Waldegger S, Gorboulev V, Arndt P, Lang F, Koepsell H: Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J Biol Chem. 1996 Dec 20;271(51):32599-604. Pubmed

3. Solute carrier family 22 member 5

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Solute carrier family 22 member 5 O76082 Details

References:

  1. Ohashi R, Tamai I, Yabuuchi H, Nezu JI, Oku A, Sai Y, Shimane M, Tsuji A: Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther. 1999 Nov;291(2):778-84. Pubmed
  2. Ohashi R, Tamai I, Nezu Ji J, Nikaido H, Hashimoto N, Oku A, Sai Y, Shimane M, Tsuji A: Molecular and physiological evidence for multifunctionality of carnitine/organic cation transporter OCTN2. Mol Pharmacol. 2001 Feb;59(2):358-66. Pubmed

4. Bile salt export pump

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Bile salt export pump O95342 Details

References:

  1. Wang EJ, Casciano CN, Clement RP, Johnson WW: Fluorescent substrates of sister-P-glycoprotein (BSEP) evaluated as markers of active transport and inhibition: evidence for contingent unequal binding sites. Pharm Res. 2003 Apr;20(4):537-44. Pubmed

5. Multidrug resistance protein 1

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: substrate inhibitor

Components

Name UniProt ID Details
Multidrug resistance protein 1 P08183 Details

References:

  1. Choo EF, Leake B, Wandel C, Imamura H, Wood AJ, Wilkinson GR, Kim RB: Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos. 2000 Jun;28(6):655-60. Pubmed
  2. Gao J, Murase O, Schowen RL, Aube J, Borchardt RT: A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm Res. 2001 Feb;18(2):171-6. Pubmed
  3. Wang EJ, Casciano CN, Clement RP, Johnson WW: Active transport of fluorescent P-glycoprotein substrates: evaluation as markers and interaction with inhibitors. Biochem Biophys Res Commun. 2001 Nov 30;289(2):580-5. Pubmed
  4. Tang F, Horie K, Borchardt RT: Are MDCK cells transfected with the human MDR1 gene a good model of the human intestinal mucosa? Pharm Res. 2002 Jun;19(6):765-72. Pubmed
  5. Horie K, Tang F, Borchardt RT: Isolation and characterization of Caco-2 subclones expressing high levels of multidrug resistance protein efflux transporter. Pharm Res. 2003 Feb;20(2):161-8. Pubmed
  6. Schwab D, Fischer H, Tabatabaei A, Poli S, Huwyler J: Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery. J Med Chem. 2003 Apr 24;46(9):1716-25. Pubmed
  7. Weiss J, Dormann SM, Martin-Facklam M, Kerpen CJ, Ketabi-Kiyanvash N, Haefeli WE: Inhibition of P-glycoprotein by newer antidepressants. J Pharmacol Exp Ther. 2003 Apr;305(1):197-204. Pubmed
  8. Tanigawara Y, Okamura N, Hirai M, Yasuhara M, Ueda K, Kioka N, Komano T, Hori R: Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J Pharmacol Exp Ther. 1992 Nov;263(2):840-5. Pubmed
  9. Ito T, Yano I, Tanaka K, Inui KI: Transport of quinolone antibacterial drugs by human P-glycoprotein expressed in a kidney epithelial cell line, LLC-PK1. J Pharmacol Exp Ther. 1997 Aug;282(2):955-60. Pubmed
  10. Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, Wilkinson GR: The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest. 1998 Jan 15;101(2):289-94. Pubmed
  11. Nagy H, Goda K, Fenyvesi F, Bacso Z, Szilasi M, Kappelmayer J, Lustyik G, Cianfriglia M, Szabo G Jr: Distinct groups of multidrug resistance modulating agents are distinguished by competition of P-glycoprotein-specific antibodies. Biochem Biophys Res Commun. 2004 Mar 19;315(4):942-9. Pubmed
  12. Jutabha P, Wempe MF, Anzai N, Otomo J, Kadota T, Endou H: Xenopus laevis oocytes expressing human P-glycoprotein: probing trans- and cis-inhibitory effects on [3H]vinblastine and [3H]digoxin efflux. Pharmacol Res. 2010 Jan;61(1):76-84. Epub 2009 Jul 21. Pubmed
  13. Dahan A, Amidon GL: Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Am J Physiol Gastrointest Liver Physiol. 2009 Aug;297(2):G371-7. Epub 2009 Jun 18. Pubmed
  14. Dahan A, Sabit H, Amidon GL: The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport. AAPS J. 2009 Jun;11(2):205-13. Epub 2009 Mar 25. Pubmed
  15. Smith BJ, Doran AC, McLean S, Tingley FD 3rd, O’Neill BT, Kajiji SM: P-glycoprotein efflux at the blood-brain barrier mediates differences in brain disposition and pharmacodynamics between two structurally related neurokinin-1 receptor antagonists. J Pharmacol Exp Ther. 2001 Sep;298(3):1252-9. Pubmed
  16. Adachi Y, Suzuki H, Sugiyama Y: Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-glycoprotein. Pharm Res. 2001 Dec;18(12):1660-8. Pubmed
  17. Neuhoff S, Ungell AL, Zamora I, Artursson P: pH-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: implications for drug-drug interactions. Pharm Res. 2003 Aug;20(8):1141-8. Pubmed
  18. Troutman MD, Thakker DR: Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture models of intestinal epithelium. Pharm Res. 2003 Aug;20(8):1210-24. Pubmed
  19. Faassen F, Vogel G, Spanings H, Vromans H: Caco-2 permeability, P-glycoprotein transport ratios and brain penetration of heterocyclic drugs. Int J Pharm. 2003 Sep 16;263(1-2):113-22. Pubmed
  20. Fromm MF, Kim RB, Stein CM, Wilkinson GR, Roden DM: Inhibition of P-glycoprotein-mediated drug transport: A unifying mechanism to explain the interaction between digoxin and quinidine [seecomments] Circulation. 1999 Feb 2;99(4):552-7. Pubmed

6. Solute carrier organic anion transporter family member 1A2

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Solute carrier organic anion transporter family member 1A2 P46721 Details

References:

  1. van Montfoort JE, Muller M, Groothuis GM, Meijer DK, Koepsell H, Meier PJ: Comparison of “type I” and “type II” organic cation transport by organic cation transporters and organic anion-transporting polypeptides. J Pharmacol Exp Ther. 2001 Jul;298(1):110-5. Pubmed
  2. Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB: OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999 Aug;27(8):866-71. Pubmed
  3. Shitara Y, Sugiyama D, Kusuhara H, Kato Y, Abe T, Meier PJ, Itoh T, Sugiyama Y: Comparative inhibitory effects of different compounds on rat oatpl (slc21a1)- and Oatp2 (Slc21a5)-mediated transport. Pharm Res. 2002 Feb;19(2):147-53. Pubmed
  4. van Montfoort, J.E. et al. Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations. J Pharmacol Exp Ther 291, 147-152 (1999).Pubmed

7. Solute carrier family 22 member 8

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Solute carrier family 22 member 8 Q8TCC7 Details

References:

  1. Cha SH, Sekine T, Fukushima JI, Kanai Y, Kobayashi Y, Goya T, Endou H: Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol. 2001 May;59(5):1277-86. Pubmed

8. Canalicular multispecific organic anion transporter 1

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Canalicular multispecific organic anion transporter 1 Q92887 Details

References:

  1. Tang F, Horie K, Borchardt RT: Are MDCK cells transfected with the human MRP2 gene a good model of the human intestinal mucosa? Pharm Res. 2002 Jun;19(6):773-9. Pubmed

9. Solute carrier family 22 member 4

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Solute carrier family 22 member 4 Q9H015 Details

References:

  1. Yabuuchi H, Tamai I, Nezu J, Sakamoto K, Oku A, Shimane M, Sai Y, Tsuji A: Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J Pharmacol Exp Ther. 1999 May;289(2):768-73. Pubmed

10. Solute carrier organic anion transporter family member 1B1

Kind: protein

Organism: Human

Pharmacological action: unknown

Actions: inhibitor

Components

Name UniProt ID Details
Solute carrier organic anion transporter family member 1B1 Q9Y6L6 Details

References:

  1. Nozawa T, Tamai I, Sai Y, Nezu J, Tsuji A: Contribution of organic anion transporting polypeptide OATP-C to hepatic elimination of the opioid pentapeptide analogue [D-Ala2, D-Leu5]-enkephalin. J Pharm Pharmacol. 2003 Jul;55(7):1013-20. Pubmed

Comments
comments powered by Disqus
Drug created on June 13, 2005 07:24 / Updated on September 16, 2013 17:12