Paroxetine

Identification

Summary

Paroxetine is a selective serotonin reuptake inhibitor used to treat major depressive disorder, panic disorder, OCD, social phobia, generalized anxiety disorder, the vasomotor symptoms of menopause, and premenstrual dysphoric disorder.

Brand Names
Paxil, Pexeva
Generic Name
Paroxetine
DrugBank Accession Number
DB00715
Background

Paroxetine is a selective serotonin reuptake inhibitor (SSRI) drug commonly known as Paxil. It has a variety of uses, including the treatment of anxiety disorders, major depression, posttraumatic stress disorder, and symptoms of menopause, among others.26 It was approved by the FDA in the early 1990s and marketed by SmithKline Beecham.32,33 A unique feature of this drug is that it is highly potent and selective in its inhibition of serotonin reuptake and has little effect on other neurotransmitters.13 Because of its potent inhibition of serotonin reuptake, paroxetine is more likely to cause withdrawal effects upon cessation. Paroxetine is well tolerated in most patients with a similar adverse effect profile to other members of its drug class.13 The controlled release formulation was designed to decrease the likelihood of nausea that is sometimes associated with paroxetine.28,36

Type
Small Molecule
Groups
Approved, Investigational
Structure
Weight
Average: 329.3654
Monoisotopic: 329.142721716
Chemical Formula
C19H20FNO3
Synonyms
  • (−)-(3S,4R)-4-(p-fluorophenyl)-3-((3,4-(methylenedioxy)phenoxy)methyl)piperidine
  • (3S-trans)-3-((1,3-benzodioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidine
  • Paroxetina
  • Paroxetine
  • Paroxetinum
External IDs
  • BRL 29060
  • BRL-29060
  • FG-7051

Pharmacology

Indication

Paroxetine is indicated for the management of depression, obsessive-compulsive disorder, panic disorder, social anxiety disorder, generalized anxiety disorder, posttraumatic stress disorder.29 One form of paroxetine, commercially known as Brisdelle, is used to manage mild to moderate vasomotor symptoms of menopause.30 Off-label, paroxetine may be used for the treatment of premature ejaculation or irritable bowel syndrome (IBS).4,5,23

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Associated Conditions
Indication TypeIndicationCombined Product DetailsApproval LevelAge GroupPatient CharacteristicsDose Form
Treatment ofGeneralized anxiety disorder•••••••••••••••••••• ••••••••••• ••••••• ••••••• •••• ••••••
Symptomatic treatment ofIrritable bowel syndrome••• •••••
Treatment ofMajor depressive disorder•••••••••••••••••••• ••••••••••• ••••••• ••••••• •••••••• •••••••• ••••••• •••• ••••••
Treatment ofObsessive-compulsive disorder••• ••••••••••••••
Treatment ofObsessive-compulsive disorder•••••••••••••••••••• ••••••••••• ••••••• ••••••• •••• ••••••
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

Paroxetine treats the symptoms of depression, various anxiety disorders, posttraumatic stress disorder, obsessive-compulsive disorder, and the vasomotor symptoms of menopause via the inhibition of serotonin reuptake.26,29,30 The onset of action of paroxetine is reported to be approximately 6 weeks.18

Due its serotonergic activity, paroxetine, like other SSRI drugs, may potentiate serotonin syndrome. This risk is especially high when monoamine oxidase (MAO) inhibitors are given within 2 weeks of paroxetine administration. Upon cessation of MAO inhibitors, a 2-week interval before paroxetine administration is recommended. Do not coadminister these agents.27

Mechanism of action

Paroxetine enhances serotonergic activity via the inhibition presynaptic reuptake of serotonin by the serotonin (SERT) receptor.20,11 This inhibition raises the level of serotonin in the synaptic cleft, relieving various symptoms. This drug has been demonstrated to be a stronger inhibitor of serotonin reuptake than other members of the same drug class, including Citalopram, Fluoxetine, and Fluvoxamine.13 The mechanism of action of paroxetine in relieving the vasomotor symptoms of menopause is unknown, according to the Brisdelle prescribing information30, but may occur due to its effects on thermoregulation.24

Paroxetine shows a clinically insignificant affinity for adrenergic alpha-1 and alpha-2 receptors and β-adrenergic receptors, dopamine D1 and D2 receptors, histamine H1 receptors and serotonin 5-HT1A, 5-HT2A and 5-HT2C receptors.13 This drug shows some affinity for muscarinic cholinergic receptors and 5-H2B receptors.21,22 The delayed onset of paroxetine therapeutic effects may be explained by the initial paroxetine actions on the 5-HT neurons. In rats, paroxetine activates 5-HT1A receptors when it is first administered, inhibiting the stimulation of the 5-HT neurons and subsequent release of serotonin at the synaptic cleft.13

TargetActionsOrganism
ASodium-dependent serotonin transporter
inhibitor
Humans
USodium-dependent noradrenaline transporter
inhibitor
Humans
U5-hydroxytryptamine receptor 2A
agonist
Humans
UAlpha-1 adrenergic receptors
binder
Humans
UAlpha-2 adrenergic receptors
binder
Humans
UBeta adrenergic receptor
inhibitor
Humans
UDopamine D2 receptor
other/unknown
Humans
UHistamine H1 receptor
inhibitor
Humans
USerotonin ReceptorsNot AvailableHumans
UMuscarinic acetylcholine receptor
inhibitor
Humans
U5-hydroxytryptamine receptor 2B
agonist
Humans
UD(1) dopamine receptor
other/unknown
Humans
Absorption

Paroxetine is readily absorbed from the gastrointestinal tract. Due to the first-pass metabolism, the bioavailability ranges from 30-60%. Cmax is attained 2 to 8 hours after an oral dose.7 Mean Tmax is 4.3 hours in healthy patients.31 The steady-state concentration of paroxetine is achieved within 7 to 14 days of oral therapy.13 In a pharmacokinetic study, AUC in healthy patients was 574 ng·h/mL and 1053 ng·h/mL in those with moderate renal impairment.31

Volume of distribution

Paroxetine has a large volume of distribution and is found throughout the body, including in the central nervous system. Only 1% of the drug is found in the plasma.29 Paroxetine is found in the breast milk at concentrations similar to the concentrations found in plasma.13

Protein binding

Paroxetine is 95% bound to plasma proteins.7,14,29

Metabolism

Paroxetine metabolism occurs in the liver and is largely mediated by cytochrome CYP2D6 with contributions from CYP3A4 and possibly other cytochrome enzymes.19,27 Genetic polymorphisms of the CYP2D6 enzyme may alter the pharmacokinetics of this drug. Poor metabolizers may demonstrate increased adverse effects while rapid metabolizers may experience decreased therapeutic effects.13,10,34

The majority of a paroxetine dose is oxidized to a catechol metabolite that is subsequently converted to both glucuronide and sulfate metabolites via methylation and conjugation. In rat synaptosomes, the glucuronide and sulfate conjugates have been shown to thousands of times less potent than paroxetine itself.31 The metabolites of paroxetine are considered inactive.25,13,27

Hover over products below to view reaction partners

Route of elimination

About 2/3 of a single paroxetine dose is found to be excreted in the urine and the remainder is found to be excreted in feces. Almost all of the dose is eliminated as metabolites; 3% is found to be excreted as unchanged paroxetine.13 About 64% of a 30 mg oral dose was found excreted in the urine, with 2% as the parent drug and 62% appearing as metabolites. Approximately 36% of the dose was found to be eliminated in the feces primarily as metabolites and less than 1% as the parent compound.29

Half-life

The mean elimination half-life of paroxetine is about 21 hours.29 In healthy young subjects, mean elimination half-life was found to be 17.3 hours.31

Clearance

The apparent oral clearance of paroxetine is 167 L/h.14 The clearance of paroxetine in patients with renal failure is significantly lower and dose adjustment may be required, despite the fact that it is mainly cleared by the liver. Dose adjustments may be required in hepatic impairment.14,29,31

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

The acute LD50 in mice and rats is 350 mg/kg.35

Overdose information

The lowest dose of paroxetine reported to lead to a fatal outcome is approximately 400 mg. The largest reported paroxetine overdose from which a patient has survived and recovered is a dose of 2000 mg. Common manifestations in a paroxetine overdose include fatigue, fever, insomnia hypertension, tachycardia, nausea, vomiting, somnolence, tremor, dizziness, agitation, confusion, anxious symptoms, headache, insomnia, hyperhidrosis, dilated pupils, seizures, paresthesia, serotonin syndrome, involuntary muscle contraction, and change in mental status. It should be noted that in some cases, patients may have consumed alcohol in addition to taking an overdose of paroxetine.31 Some of these symptoms may also be seen with clinical use. There is no specific antidote to an overdose of paroxetine.12

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Interacting Gene/EnzymeAllele nameGenotype(s)Defining Change(s)Type(s)DescriptionDetails
Multidrug resistance protein 1---(C;C) / (C;T)C AlleleEffect Directly StudiedPatients with this genotype have an increased likelihood of remission when using paroxetine to treat major depressive disorder.Details
Cytochrome P450 2D6CYP2D6*3Not Available2549delAEffect Directly StudiedThe presence of this polymorphism in CYP2D6 is associated with reduced or poor metabolism of paroxetine.Details
Cytochrome P450 2D6CYP2D6*4Not AvailableA alleleEffect Directly StudiedThe presence of this polymorphism in CYP2D6 is associated with reduced or poor metabolism of paroxetine.Details
Cytochrome P450 2D6CYP2D6*5Not AvailableWhole-gene deletionEffect Directly StudiedThe presence of this polymorphism in CYP2D6 is associated with reduced or poor metabolism of paroxetine.Details
Cytochrome P450 2D6CYP2D6*6Not Available1707delTEffect Directly StudiedThe presence of this polymorphism in CYP2D6 is associated with reduced or poor metabolism of paroxetine.Details
Cytochrome P450 2D6CYP2D6*7Not Available2935A>CEffect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*8Not Available1758G>TEffect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*11Not Available883G>CEffect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*12Not Available124G>AEffect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*13Not AvailableCYP2D7/2D6 hybrid gene structureEffect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*14ANot Available1758G>AEffect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*15Not Available137insT, 137_138insTEffect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*19Not Available2539_2542delAACTEffect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*20Not Available1973_1974insGEffect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*21Not Available2573insCEffect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*31Not Available-1770G>A / -1584C>G  … show all Effect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*36Not Available100C>T / -1426C>T  … show all Effect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*38Not Available2587_2590delGACTEffect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*40Not Available1863_1864ins(TTT CGC CCC)2Effect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*42Not Available3259_3260insGTEffect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*44Not Available2950G>CEffect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*47Not Available100C>T / -1426C>T  … show all Effect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*51Not Available-1584C>G / -1235A>G  … show all Effect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*56Not Available3201C>TEffect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*57Not Available100C>T / 310G>T  … show all Effect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*62Not Available4044C>TEffect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*68ANot Available-1426C>T / -1235A>G  … show all Effect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*68BNot AvailableSimilar but not identical switch region compared to CYP2D6*68A. Found in tandem arrangement with CYP2D6*4.Effect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*69Not Available2988G>A / -1426C>T  … show all Effect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*92Not Available1995delCEffect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*100Not Available-1426C>T / -1235A>G  … show all Effect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*101Not Available-1426C>T / -1235A>G  … show all Effect InferredPoor drug metabolizer. For individual with two non-functional alleles, alternative drug or dose reduction recommended.Details
Cytochrome P450 2D6CYP2D6*3Not AvailableG alleleEffect Directly StudiedThe presence of this polymorphism in CYP2D6 is associated with reduced or poor metabolism of paroxetine.Details
Cytochrome P450 2D6CYP2D6*4Not Available3877G>AEffect Directly StudiedThe presence of this polymorphism in CYP2D6 is associated with reduced or poor metabolism of paroxetine.Details

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
1,2-BenzodiazepineThe risk or severity of adverse effects can be increased when 1,2-Benzodiazepine is combined with Paroxetine.
AbametapirThe serum concentration of Paroxetine can be increased when it is combined with Abametapir.
AbataceptThe metabolism of Paroxetine can be increased when combined with Abatacept.
AbciximabThe risk or severity of hemorrhage can be increased when Paroxetine is combined with Abciximab.
AbirateroneThe serum concentration of Paroxetine can be increased when it is combined with Abiraterone.
Food Interactions
  • Avoid alcohol.
  • Take with or without food. Food does not significantly affect absorption.

Products

Drug product information from 10+ global regions
Our datasets provide approved product information including:
dosage, form, labeller, route of administration, and marketing period.
Access now
Access drug product information from over 10 global regions.
Access now
Product Ingredients
IngredientUNIICASInChI Key
Paroxetine hydrochloride3I3T11UD2S78246-49-8GELRVIPPMNMYGS-RVXRQPKJSA-N
Paroxetine hydrochloride hemihydrateX2ELS050D8110429-35-1MQZOATSIFWSKKT-OASXIEIISA-N
Paroxetine mesylateM711N184JE217797-14-3SHIJTGJXUHTGGZ-RVXRQPKJSA-N
Product Images
International/Other Brands
Aropax / PAXILCR / Sereupin / Seroxat / Seroxat CR
Brand Name Prescription Products
NameDosageStrengthRouteLabellerMarketing StartMarketing EndRegionImage
Act ParoxetineTablet20 mgOralActavis Pharma Company2005-03-142020-10-21Canada flag
Act ParoxetineTablet10 mgOralActavis Pharma Company2005-03-142020-10-21Canada flag
Act ParoxetineTablet30 mgOralActavis Pharma Company2005-03-142020-10-21Canada flag
BrisdelleCapsule7.5 mg/1OralSebela Pharmaceuticals Inc.2017-05-232023-01-31US flag
BrisdelleCapsule7.5 mg/1OralNoven Therapeutics2013-06-282017-11-30US flag
Generic Prescription Products
NameDosageStrengthRouteLabellerMarketing StartMarketing EndRegionImage
Ag-paroxetineTablet30 mgOralAngita Pharma Inc.2018-07-24Not applicableCanada flag
Ag-paroxetineTablet20 mgOralAngita Pharma Inc.2018-07-24Not applicableCanada flag
Ag-paroxetineTablet10 mgOralAngita Pharma Inc.2018-07-24Not applicableCanada flag
Ag-paroxetine TabletsTablet20 mgOralAngita Pharma Inc.2022-03-18Not applicableCanada flag
Ag-paroxetine TabletsTablet10 mgOralAngita Pharma Inc.2022-03-18Not applicableCanada flag

Categories

ATC Codes
N06AB05 — Paroxetine
Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as phenylpiperidines. These are compounds containing a phenylpiperidine skeleton, which consists of a piperidine bound to a phenyl group.
Kingdom
Organic compounds
Super Class
Organoheterocyclic compounds
Class
Piperidines
Sub Class
Phenylpiperidines
Direct Parent
Phenylpiperidines
Alternative Parents
Benzodioxoles / Fluorobenzenes / Aralkylamines / Alkyl aryl ethers / Aryl fluorides / Oxacyclic compounds / Dialkylamines / Azacyclic compounds / Acetals / Organopnictogen compounds
show 2 more
Substituents
Acetal / Alkyl aryl ether / Amine / Aralkylamine / Aromatic heteropolycyclic compound / Aryl fluoride / Aryl halide / Azacycle / Benzenoid / Benzodioxole
show 16 more
Molecular Framework
Aromatic heteropolycyclic compounds
External Descriptors
piperidines, organofluorine compound, aromatic ether, benzodioxoles (CHEBI:7936)
Affected organisms
  • Humans and other mammals

Chemical Identifiers

UNII
41VRH5220H
CAS number
61869-08-7
InChI Key
AHOUBRCZNHFOSL-YOEHRIQHSA-N
InChI
InChI=1S/C19H20FNO3/c20-15-3-1-13(2-4-15)17-7-8-21-10-14(17)11-22-16-5-6-18-19(9-16)24-12-23-18/h1-6,9,14,17,21H,7-8,10-12H2/t14-,17-/m0/s1
IUPAC Name
(3S,4R)-3-[(2H-1,3-benzodioxol-5-yloxy)methyl]-4-(4-fluorophenyl)piperidine
SMILES
FC1=CC=C(C=C1)[C@@H]1CCNC[C@H]1COC1=CC2=C(OCO2)C=C1

References

Synthesis Reference

Charles M. Zepp, Yun Gao, Donald L. Heefner, "Method of preparing optically pure precursors of paroxetine." U.S. Patent US5258517, issued November 1993.

US5258517
General References
  1. Baldwin DS, Anderson IM, Nutt DJ, Bandelow B, Bond A, Davidson JR, den Boer JA, Fineberg NA, Knapp M, Scott J, Wittchen HU: Evidence-based guidelines for the pharmacological treatment of anxiety disorders: recommendations from the British Association for Psychopharmacology. J Psychopharmacol. 2005 Nov;19(6):567-96. [Article]
  2. Baldwin D, Bobes J, Stein DJ, Scharwachter I, Faure M: Paroxetine in social phobia/social anxiety disorder. Randomised, double-blind, placebo-controlled study. Paroxetine Study Group. Br J Psychiatry. 1999 Aug;175:120-6. [Article]
  3. Yonkers KA, Gullion C, Williams A, Novak K, Rush AJ: Paroxetine as a treatment for premenstrual dysphoric disorder. J Clin Psychopharmacol. 1996 Feb;16(1):3-8. [Article]
  4. Waldinger MD, Hengeveld MW, Zwinderman AH, Olivier B: Effect of SSRI antidepressants on ejaculation: a double-blind, randomized, placebo-controlled study with fluoxetine, fluvoxamine, paroxetine, and sertraline. J Clin Psychopharmacol. 1998 Aug;18(4):274-81. [Article]
  5. Zhang D, Cheng Y, Wu K, Ma Q, Jiang J, Yan Z: Paroxetine in the treatment of premature ejaculation: a systematic review and meta-analysis. BMC Urol. 2019 Jan 3;19(1):2. doi: 10.1186/s12894-018-0431-7. [Article]
  6. Nevels RM, Gontkovsky ST, Williams BE: Paroxetine-The Antidepressant from Hell? Probably Not, But Caution Required. Psychopharmacol Bull. 2016 Mar 1;46(1):77-104. [Article]
  7. Hiemke C: [Paroxetine: pharmacokinetics and pharmacodynamics]. Fortschr Neurol Psychiatr. 1994 Sep;62 Suppl 1:2-8. [Article]
  8. van Zeeland YR, Schoemaker NJ, Haritova A, Smit JW, van Maarseveen EM, Lumeij JT, Fink-Gremmels J: Pharmacokinetics of paroxetine, a selective serotonin reuptake inhibitor, in Grey parrots (Psittacus erithacus erithacus): influence of pharmaceutical formulation and length of dosing. J Vet Pharmacol Ther. 2013 Feb;36(1):51-8. doi: 10.1111/j.1365-2885.2012.01391.x. Epub 2012 Mar 21. [Article]
  9. Tang SW, Helmeste D: Paroxetine. Expert Opin Pharmacother. 2008 Apr;9(5):787-94. doi: 10.1517/14656566.9.5.787 . [Article]
  10. Uttamsingh V, Gallegos R, Liu JF, Harbeson SL, Bridson GW, Cheng C, Wells DS, Graham PB, Zelle R, Tung R: Altering metabolic profiles of drugs by precision deuteration: reducing mechanism-based inhibition of CYP2D6 by paroxetine. J Pharmacol Exp Ther. 2015 Jul;354(1):43-54. doi: 10.1124/jpet.115.223768. Epub 2015 May 5. [Article]
  11. Davis BA, Nagarajan A, Forrest LR, Singh SK: Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter. Sci Rep. 2016 Apr 1;6:23789. doi: 10.1038/srep23789. [Article]
  12. Calisto V, Ferreira CI, Oliveira JA, Otero M, Esteves VI: Adsorptive removal of pharmaceuticals from water by commercial and waste-based carbons. J Environ Manage. 2015 Apr 1;152:83-90. doi: 10.1016/j.jenvman.2015.01.019. Epub 2015 Jan 21. [Article]
  13. Foster RH, Goa KL: Paroxetine : a review of its pharmacology and therapeutic potential in the management of panic disorder. CNS Drugs. 1997 Aug;8(2):163-88. doi: 10.2165/00023210-199708020-00010. [Article]
  14. van Harten J: Clinical pharmacokinetics of selective serotonin reuptake inhibitors. Clin Pharmacokinet. 1993 Mar;24(3):203-20. doi: 10.2165/00003088-199324030-00003. [Article]
  15. Geller DA, Wagner KD, Emslie G, Murphy T, Carpenter DJ, Wetherhold E, Perera P, Machin A, Gardiner C: Paroxetine treatment in children and adolescents with obsessive-compulsive disorder: a randomized, multicenter, double-blind, placebo-controlled trial. J Am Acad Child Adolesc Psychiatry. 2004 Nov;43(11):1387-96. doi: 10.1097/01.chi.0000138356.29099.f1. [Article]
  16. Kato O, Misawa H: Treatment of diarrhea-predominant irritable bowel syndrome with paroxetine. Prim Care Companion J Clin Psychiatry. 2005;7(4):202. doi: 10.4088/pcc.v07n0412a. [Article]
  17. Gray SL, Hanlon JT: Anticholinergic medication use and dementia: latest evidence and clinical implications. Ther Adv Drug Saf. 2016 Oct;7(5):217-224. doi: 10.1177/2042098616658399. Epub 2016 Jul 18. [Article]
  18. Morishita S, Arita S: Differential period of onset of action of fluvoxamine, paroxetine and milnacipran for depression. Hum Psychopharmacol. 2003 Aug;18(6):479-82. doi: 10.1002/hup.508. [Article]
  19. Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1. [Article]
  20. Scholze P, Zwach J, Kattinger A, Pifl C, Singer EA, Sitte HH: Transporter-mediated release: a superfusion study on human embryonic kidney cells stably expressing the human serotonin transporter. J Pharmacol Exp Ther. 2000 Jun;293(3):870-8. [Article]
  21. Fujishiro J, Imanishi T, Onozawa K, Tsushima M: Comparison of the anticholinergic effects of the serotonergic antidepressants, paroxetine, fluvoxamine and clomipramine. Eur J Pharmacol. 2002 Nov 15;454(2-3):183-8. doi: 10.1016/s0014-2999(02)02557-8. [Article]
  22. Peng L, Gu L, Li B, Hertz L: Fluoxetine and all other SSRIs are 5-HT2B Agonists - Importance for their Therapeutic Effects. Curr Neuropharmacol. 2014 Jul;12(4):365-79. doi: 10.2174/1570159X12666140828221720. [Article]
  23. Masand PS, Gupta S, Schwartz TL, Virk S, Lockwood K, Hameed A, King M, Kaplan DS: Paroxetine in Patients With Irritable Bowel Syndrome: A Pilot Open-Label Study. Prim Care Companion J Clin Psychiatry. 2002 Feb;4(1):12-16. doi: 10.4088/pcc.v04n0105. [Article]
  24. Shortall SE, Spicer CH, Ebling FJ, Green AR, Fone KC, King MV: Contribution of serotonin and dopamine to changes in core body temperature and locomotor activity in rats following repeated administration of mephedrone. Addict Biol. 2016 Nov;21(6):1127-1139. doi: 10.1111/adb.12283. Epub 2015 Jul 16. [Article]
  25. Jornil J, Jensen KG, Larsen F, Linnet K: Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator. Drug Metab Dispos. 2010 Mar;38(3):376-85. doi: 10.1124/dmd.109.030551. Epub 2009 Dec 10. [Article]
  26. Prabina Shrestha; Sara Abdijadid (2018). Paroxetine. NIH StatPearls.
  27. Siu Wa Tang and Daiga Helmeste (2008). Expert opinion on pharmacotherapeutics; Paroxetine. Taylor and Francis online.
  28. Paxil CR FDA label [Link]
  29. Paroxetine FDA Label [Link]
  30. Brisdelle FDA label [Link]
  31. GSK monograph, Paxil [Link]
  32. Paxil [Link]
  33. Putting GlaxoSmithKline to the test over paroxetine [Link]
  34. Annotation of CPIC Guideline for paroxetine and CYP2D6 [Link]
  35. Sandoz paroxetine tablets [Link]
  36. Paroxetine, psychopharmacology institute [Link]
Human Metabolome Database
HMDB0014853
KEGG Drug
D02362
KEGG Compound
C07415
PubChem Compound
43815
PubChem Substance
46504821
ChemSpider
39888
BindingDB
50331515
RxNav
32937
ChEBI
7936
ChEMBL
CHEMBL490
ZINC
ZINC000000527386
Therapeutic Targets Database
DAP001428
PharmGKB
PA450801
PDBe Ligand
8PR
RxList
RxList Drug Page
Drugs.com
Drugs.com Drug Page
Wikipedia
Paroxetine
PDB Entries
3v5w / 4jlt / 4l9i / 4mm4 / 5i6x / 6awn / 6dzw / 6f6i / 6vrh / 7oih
MSDS
Download (51.2 KB)

Clinical Trials

Clinical Trials
PhaseStatusPurposeConditionsCount
4CompletedNot AvailableMajor Depressive Disorder (MDD)1
4CompletedBasic SciencePost Traumatic Stress Disorder (PTSD)2
4CompletedHealth Services ResearchObsessive Compulsive Disorder (OCD)1
4CompletedOtherHealthy Controls / Major Depressive Disorder (MDD)1
4CompletedPreventionCoronary Artery Disease (CAD)1

Pharmacoeconomics

Manufacturers
  • Glaxosmithkline
  • Apotex inc
  • Mylan pharmaceuticals inc
  • Actavis elizabeth llc
  • Alphapharm pty ltd
  • Aurobindo pharma ltd
  • Caraco pharmaceutical laboratories ltd
  • Roxane laboratories inc
  • Sandoz inc
  • Teva pharmaceuticals usa inc
  • Teva pharmaceuticals usa
  • Zydus pharmaceuticals usa inc
  • Noven therapeutics llc
Packagers
  • Advanced Pharmaceutical Services Inc.
  • Aidarex Pharmacuticals LLC
  • Alphapharm Party Ltd.
  • Amerisource Health Services Corp.
  • Apotex Inc.
  • A-S Medication Solutions LLC
  • Aurobindo Pharma Ltd.
  • Bryant Ranch Prepack
  • Cadila Healthcare Ltd.
  • Caraco Pharmaceutical Labs
  • Cardinal Health
  • Comprehensive Consultant Services Inc.
  • Corepharma LLC
  • Dept Health Central Pharmacy
  • Dispensing Solutions
  • Diversified Healthcare Services Inc.
  • Excella GmbH
  • GlaxoSmithKline Inc.
  • Golden State Medical Supply Inc.
  • Greenstone LLC
  • H.J. Harkins Co. Inc.
  • Heartland Repack Services LLC
  • Innoviant Pharmacy Inc.
  • International Laboratories Inc.
  • Kaiser Foundation Hospital
  • Lake Erie Medical and Surgical Supply
  • Major Pharmaceuticals
  • Mallinckrodt Inc.
  • Mckesson Corp.
  • Murfreesboro Pharmaceutical Nursing Supply
  • Mylan
  • Neuman Distributors Inc.
  • Norwich Pharmaceuticals Inc.
  • Noven Pharmaceuticals Inc.
  • Nucare Pharmaceuticals Inc.
  • Palmetto Pharmaceuticals Inc.
  • PD-Rx Pharmaceuticals Inc.
  • Penn Labs
  • Pharmacy Service Center
  • Physicians Total Care Inc.
  • Preferred Pharmaceuticals Inc.
  • Prepackage Specialists
  • Prepak Systems Inc.
  • Rebel Distributors Corp.
  • Remedy Repack
  • Resource Optimization and Innovation LLC
  • Rubin Neudecker Medical Research Laboratories Ltd.
  • Sandhills Packaging Inc.
  • Sandoz
  • Southwood Pharmaceuticals
  • Stat Rx Usa
  • Synthon Pharmaceuticals Inc.
  • Teva Pharmaceutical Industries Ltd.
  • Torpharm Inc.
  • UDL Laboratories
  • Vangard Labs Inc.
  • Watson Pharmaceuticals
  • Zydus Pharmaceuticals
Dosage Forms
FormRouteStrength
TabletOral22.760 mg
Tablet, film coatedOral20.0 mg
TabletOral20.000 mg
TabletOral20.00 mg
TabletOral20. mg
Solution / dropsOral33.1 MG/ML
Solution / dropsOral10 MG/ML
SolutionOral33.1 mg/ml
SuspensionOral2 MG/ML
TabletOral11.100 mg
TabletOral10 mg
TabletOral20 mg
TabletOral30 mg
SolutionOral4.280 g
TabletOral40.000 mg
Tablet, film coatedOral10 MG
Tablet, film coatedOral30 MG
Tablet, film coatedOral40 MG
Tablet, film coatedOral
Tablet, film coatedOral20 mg
TabletOral
CapsuleOral7.5 mg/1
TabletOral10 mg/1
TabletOral20 mg/1
TabletOral30 mg/1
TabletOral40 mg/1
Tablet, film coatedOral10 mg/1
Tablet, film coatedOral20 mg/1
Tablet, film coatedOral30 mg/1
Tablet, film coatedOral40 mg/1
Tablet, film coated, extended releaseOral37.5 mg/1
TabletOral37.5 mg/1
Tablet, coatedOral10 mg
Tablet, coatedOral20 mg
Tablet, coatedOral5 mg
SuspensionOral10 mg/5mL
Tablet, extended releaseOral12.5 mg
Tablet, extended releaseOral25 mg
Tablet, extended releaseOral37.5 mg
Tablet, film coated, extended releaseOral12.5 mg/1
Tablet, film coated, extended releaseOral25 mg/1
Solution / dropsOral
TabletOral40 mg
SolutionOral1.000 g
SuspensionOral20 MG/10ML
Tablet, film coatedOral12.5 mg
TabletOral12.5 mg
Tablet, film coatedOral25 mg
TabletOral25 mg
Prices
Unit descriptionCostUnit
Paxil 30 40 mg tablet Bottle138.39USD bottle
Paxil 30 30 mg tablet Bottle131.0USD bottle
Paxil 30 10 mg tablet Bottle121.87USD bottle
Pexeva 40 mg tablet6.29USD tablet
Pexeva 30 mg tablet6.11USD tablet
Pexeva 20 mg tablet5.84USD tablet
Pexeva 10 mg tablet5.6USD tablet
Paxil CR 37.5 mg 24 Hour tablet4.5USD tablet
Paxil 40 mg tablet4.44USD tablet
Paxil CR 25 mg 24 Hour tablet4.37USD tablet
Paxil cr 37.5 mg tablet4.32USD tablet
Paxil 30 mg tablet4.2USD tablet
Paxil cr 25 mg tablet4.2USD tablet
Paxil CR 12.5 mg 24 Hour tablet4.18USD tablet
Paxil 20 mg tablet4.16USD tablet
PARoxetine HCl 37.5 mg 24 Hour tablet4.04USD tablet
Paxil cr 12.5 mg tablet4.02USD tablet
PARoxetine HCl 25 mg 24 Hour tablet3.93USD tablet
Paxil 10 mg tablet3.91USD tablet
PARoxetine HCl 12.5 mg 24 Hour tablet3.76USD tablet
Paroxetine hcl 40 mg tablet2.93USD tablet
Paroxetine hcl 30 mg tablet2.78USD tablet
Paroxetine hcl 20 mg tablet2.7USD tablet
Paroxetine hcl 10 mg tablet2.58USD tablet
Paxil 30 mg Tablet2.16USD tablet
Pms-Paroxetine 40 mg Tablet2.1USD tablet
Paxil 20 mg Tablet2.03USD tablet
Apo-Paroxetine 30 mg Tablet1.12USD tablet
Co Paroxetine 30 mg Tablet1.12USD tablet
Mylan-Paroxetine 30 mg Tablet1.12USD tablet
Novo-Paroxetine 30 mg Tablet1.12USD tablet
Phl-Paroxetine 30 mg Tablet1.12USD tablet
Pms-Paroxetine 30 mg Tablet1.12USD tablet
Ratio-Paroxetine 30 mg Tablet1.12USD tablet
Sandoz Paroxetine 30 mg Tablet1.12USD tablet
Apo-Paroxetine 20 mg Tablet1.05USD tablet
Co Paroxetine 20 mg Tablet1.05USD tablet
Mylan-Paroxetine 20 mg Tablet1.05USD tablet
Novo-Paroxetine 20 mg Tablet1.05USD tablet
Phl-Paroxetine 20 mg Tablet1.05USD tablet
Pms-Paroxetine 20 mg Tablet1.05USD tablet
Ratio-Paroxetine 20 mg Tablet1.05USD tablet
Sandoz Paroxetine 20 mg Tablet1.05USD tablet
Paxil 10 mg/5ml Suspension0.85USD ml
DrugBank does not sell nor buy drugs. Pricing information is supplied for informational purposes only.
Patents
Patent NumberPediatric ExtensionApprovedExpires (estimated)Region
US6703408No2004-03-092022-10-21US flag
US5789449No1998-08-042009-07-06US flag
CA2445678No2009-11-242016-07-19Canada flag
CA2168829No1997-12-162016-02-05Canada flag
US7598271No2009-10-062023-02-12US flag
US6121291Yes2000-09-192017-09-17US flag
US5811436Yes1998-09-222016-03-22US flag
US6063927Yes2000-05-162019-10-23US flag
US6172233Yes2001-01-092018-07-15US flag
US7229640Yes2007-06-122017-01-19US flag
US6548084Yes2003-04-152017-01-19US flag
US5874447No1999-02-232017-06-10US flag
US8658663No2014-02-252029-04-06US flag
US8946251No2015-02-032026-08-04US flag
US6133289Yes2000-10-172015-11-19US flag
US5900423Yes1999-05-042015-11-19US flag
US5872132Yes1999-02-162015-11-19US flag
US6080759Yes2000-06-272015-11-19US flag
US9393237No2016-07-192026-08-04US flag

Properties

State
Solid
Experimental Properties
PropertyValueSource
melting point (°C)120-138https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/020031s060,020936s037,020710s024lbl.pdf
boiling point (°C)451.7±45.0 http://www.chemspider.com/Chemical-Structure.39888.html
water solubility5.4 mg/mLhttps://www.accessdata.fda.gov/drugsatfda_docs/label/2008/020031s060,020936s037,020710s024lbl.pdf
logP2.53https://ca.gsk.com/media/530543/paxil_pm-2014-11-13.pdf
pKa9.90https://ca.gsk.com/media/530543/paxil_pm-2014-11-13.pdf
Predicted Properties
PropertyValueSource
Water Solubility0.00853 mg/mLALOGPS
logP3.1ALOGPS
logP3.15Chemaxon
logS-4.6ALOGPS
pKa (Strongest Basic)9.77Chemaxon
Physiological Charge1Chemaxon
Hydrogen Acceptor Count4Chemaxon
Hydrogen Donor Count1Chemaxon
Polar Surface Area39.72 Å2Chemaxon
Rotatable Bond Count4Chemaxon
Refractivity88.02 m3·mol-1Chemaxon
Polarizability34.44 Å3Chemaxon
Number of Rings4Chemaxon
Bioavailability1Chemaxon
Rule of FiveYesChemaxon
Ghose FilterYesChemaxon
Veber's RuleYesChemaxon
MDDR-like RuleNoChemaxon
Predicted ADMET Features
PropertyValueProbability
Human Intestinal Absorption+1.0
Blood Brain Barrier+0.9869
Caco-2 permeable+0.5195
P-glycoprotein substrateSubstrate0.6555
P-glycoprotein inhibitor IInhibitor0.8564
P-glycoprotein inhibitor IIInhibitor0.6771
Renal organic cation transporterInhibitor0.5222
CYP450 2C9 substrateNon-substrate0.9265
CYP450 2D6 substrateSubstrate0.8918
CYP450 3A4 substrateNon-substrate0.6004
CYP450 1A2 substrateInhibitor0.9107
CYP450 2C9 inhibitorInhibitor0.8948
CYP450 2D6 inhibitorNon-inhibitor0.9231
CYP450 2C19 inhibitorNon-inhibitor0.9025
CYP450 3A4 inhibitorInhibitor0.8298
CYP450 inhibitory promiscuityHigh CYP Inhibitory Promiscuity0.8649
Ames testNon AMES toxic0.6722
CarcinogenicityNon-carcinogens0.9046
BiodegradationNot ready biodegradable0.995
Rat acute toxicity2.8239 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Strong inhibitor0.5554
hERG inhibition (predictor II)Non-inhibitor0.5879
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397)

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted GC-MS Spectrum - GC-MSPredicted GC-MSsplash10-0f9i-1911000000-12c3e68d4fb152fcf19a
Mass Spectrum (Electron Ionization)MSsplash10-0006-8900000000-0a273deac3c7836cdc76
LC-MS/MS Spectrum - LC-ESI-QTOF , positiveLC-MS/MSsplash10-001i-3709000000-7d029049c2e6d638ecbe
LC-MS/MS Spectrum - LC-ESI-QFT , positiveLC-MS/MSsplash10-001i-2409000000-077fb077fbf0e4210f51
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-001i-0409000000-5677d929c814199c467d
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-0a6r-0904000000-4744a1a77af42fd26a6f
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-004i-0259000000-cb1933747199107feb5d
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-0gwu-0914000000-93924750e5578bc6846f
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-0a4l-2911000000-7e90b4b8a217c53f65e3
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-01p9-0941000000-4d128653ba5cb2701348
Predicted 1H NMR Spectrum1D NMRNot Applicable
Predicted 13C NMR Spectrum1D NMRNot Applicable
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (Å2)Source typeSource
[M-H]-185.7456314
predicted
DarkChem Lite v0.1.0
[M-H]-185.9723314
predicted
DarkChem Lite v0.1.0
[M-H]-176.38701
predicted
DeepCCS 1.0 (2019)
[M+H]+186.3705314
predicted
DarkChem Lite v0.1.0
[M+H]+186.1153314
predicted
DarkChem Lite v0.1.0
[M+H]+178.74504
predicted
DeepCCS 1.0 (2019)
[M+Na]+186.2144314
predicted
DarkChem Lite v0.1.0
[M+Na]+186.0223314
predicted
DarkChem Lite v0.1.0
[M+Na]+185.49301
predicted
DeepCCS 1.0 (2019)

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Serotonin:sodium symporter activity
Specific Function
Serotonin transporter whose primary function in the central nervous system involves the regulation of serotonergic signaling via transport of serotonin molecules from the synaptic cleft back into t...
Gene Name
SLC6A4
Uniprot ID
P31645
Uniprot Name
Sodium-dependent serotonin transporter
Molecular Weight
70324.165 Da
References
  1. Scholze P, Zwach J, Kattinger A, Pifl C, Singer EA, Sitte HH: Transporter-mediated release: a superfusion study on human embryonic kidney cells stably expressing the human serotonin transporter. J Pharmacol Exp Ther. 2000 Jun;293(3):870-8. [Article]
  2. Preuss UW, Soyka M, Bahlmann M, Wenzel K, Behrens S, de Jonge S, Kruger M, Bondy B: Serotonin transporter gene regulatory region polymorphism (5-HTTLPR), [3H]paroxetine binding in healthy control subjects and alcohol-dependent patients and their relationships to impulsivity. Psychiatry Res. 2000 Sep 25;96(1):51-61. [Article]
  3. Haughey HM, Fleckenstein AE, Metzger RR, Hanson GR: The effects of methamphetamine on serotonin transporter activity: role of dopamine and hyperthermia. J Neurochem. 2000 Oct;75(4):1608-17. [Article]
  4. Wihlback AC, Sundstrom-Poromaa I, Allard P, Mjorndal T, Spigset O, Backstrom T: Influence of postmenopausal hormone replacement therapy on platelet serotonin uptake site and serotonin 2A receptor binding. Obstet Gynecol. 2001 Sep;98(3):450-7. [Article]
  5. Tatsumi M, Groshan K, Blakely RD, Richelson E: Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol. 1997 Dec 11;340(2-3):249-58. [Article]
  6. Davis BA, Nagarajan A, Forrest LR, Singh SK: Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter. Sci Rep. 2016 Apr 1;6:23789. doi: 10.1038/srep23789. [Article]
  7. Foster RH, Goa KL: Paroxetine : a review of its pharmacology and therapeutic potential in the management of panic disorder. CNS Drugs. 1997 Aug;8(2):163-88. doi: 10.2165/00023210-199708020-00010. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Norepinephrine:sodium symporter activity
Specific Function
Amine transporter. Terminates the action of noradrenaline by its high affinity sodium-dependent reuptake into presynaptic terminals.
Gene Name
SLC6A2
Uniprot ID
P23975
Uniprot Name
Sodium-dependent noradrenaline transporter
Molecular Weight
69331.42 Da
References
  1. Rubin RT: Paroxetine binding to the rat norepinephrine transporter in vivo. Biol Psychiatry. 2000 Nov 1;48(9):954-6. [Article]
  2. Gilmor ML, Owens MJ, Nemeroff CB: Inhibition of norepinephrine uptake in patients with major depression treated with paroxetine. Am J Psychiatry. 2002 Oct;159(10):1702-10. [Article]
  3. Nemeroff CB, Owens MJ: Neuropharmacology of paroxetine. Psychopharmacol Bull. 2003 Spring;37 Suppl 1:8-18. [Article]
  4. Tatsumi M, Groshan K, Blakely RD, Richelson E: Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol. 1997 Dec 11;340(2-3):249-58. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Agonist
General Function
Virus receptor activity
Specific Function
G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various drugs and psychoactive substances, including mescaline, psilocybin, 1-(2,5-dimethoxy-4-iodop...
Gene Name
HTR2A
Uniprot ID
P28223
Uniprot Name
5-hydroxytryptamine receptor 2A
Molecular Weight
52602.58 Da
References
  1. Bixo M, Allard P, Backstrom T, Mjorndal T, Nyberg S, Spigset O, Sundstrom-Poromaa I: Binding of [3H]paroxetine to serotonin uptake sites and of [3H]lysergic acid diethylamide to 5-HT2A receptors in platelets from women with premenstrual dysphoric disorder during gonadotropin releasing hormone treatment. Psychoneuroendocrinology. 2001 Aug;26(6):551-64. [Article]
  2. Meyer JH, Kapur S, Eisfeld B, Brown GM, Houle S, DaSilva J, Wilson AA, Rafi-Tari S, Mayberg HS, Kennedy SH: The effect of paroxetine on 5-HT(2A) receptors in depression: an [(18)F]setoperone PET imaging study. Am J Psychiatry. 2001 Jan;158(1):78-85. doi: 10.1176/appi.ajp.158.1.78. [Article]
  3. Foster RH, Goa KL: Paroxetine : a review of its pharmacology and therapeutic potential in the management of panic disorder. CNS Drugs. 1997 Aug;8(2):163-88. doi: 10.2165/00023210-199708020-00010. [Article]
  4. Newcombe F, Patel BA: Alkaloids of the leaves of Voacanga schweinfurthii Stapf. Planta Med. 1969 Aug;17(3):276-80. doi: 10.1055/s-0028-1099857. [Article]
Kind
Protein group
Organism
Humans
Pharmacological action
Unknown
Actions
Binder
General Function
Protein heterodimerization activity
Specific Function
This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. Its effect is mediated by G(q) and G(11) prot...

Components:
References
  1. Thomas DR, Nelson DR, Johnson AM: Biochemical effects of the antidepressant paroxetine, a specific 5-hydroxytryptamine uptake inhibitor. Psychopharmacology (Berl). 1987;93(2):193-200. doi: 10.1007/bf00179933. [Article]
  2. Siu Wa Tang and Daiga Helmeste (2008). Expert opinion on pharmacotherapeutics; Paroxetine. Taylor and Francis online.
  3. GSK monograph, Paxil [Link]
Kind
Protein group
Organism
Humans
Pharmacological action
Unknown
Actions
Binder
General Function
Thioesterase binding
Specific Function
Alpha-2 adrenergic receptors mediate the catecholamine-induced inhibition of adenylate cyclase through the action of G proteins. The rank order of potency for agonists of this receptor is oxymetazo...

Components:
References
  1. Thomas DR, Nelson DR, Johnson AM: Biochemical effects of the antidepressant paroxetine, a specific 5-hydroxytryptamine uptake inhibitor. Psychopharmacology (Berl). 1987;93(2):193-200. doi: 10.1007/bf00179933. [Article]
  2. Siu Wa Tang and Daiga Helmeste (2008). Expert opinion on pharmacotherapeutics; Paroxetine. Taylor and Francis online.
  3. GSK monograph, Paxil [Link]
Kind
Protein group
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Receptor signaling protein activity
Specific Function
Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. This receptor binds epinephrine and norepinephrine with approximately e...

Components:
References
  1. Guo S, Carter RL, Grisanti LA, Koch WJ, Tilley DG: Impact of paroxetine on proximal beta-adrenergic receptor signaling. Cell Signal. 2017 Oct;38:127-133. doi: 10.1016/j.cellsig.2017.07.006. Epub 2017 Jul 12. [Article]
  2. Siu Wa Tang and Daiga Helmeste (2008). Expert opinion on pharmacotherapeutics; Paroxetine. Taylor and Francis online.
  3. GSK monograph, Paxil [Link]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Other/unknown
General Function
Potassium channel regulator activity
Specific Function
Dopamine receptor whose activity is mediated by G proteins which inhibit adenylyl cyclase.
Gene Name
DRD2
Uniprot ID
P14416
Uniprot Name
D(2) dopamine receptor
Molecular Weight
50618.91 Da
References
  1. Ouk K, Aungier J, Cuesta M, Morton AJ: Chronic paroxetine treatment prevents disruption of methamphetamine-sensitive circadian oscillator in a transgenic mouse model of Huntington's disease. Neuropharmacology. 2018 Mar 15;131:337-350. doi: 10.1016/j.neuropharm.2017.12.033. Epub 2017 Dec 21. [Article]
  2. Foster RH, Goa KL: Paroxetine : a review of its pharmacology and therapeutic potential in the management of panic disorder. CNS Drugs. 1997 Aug;8(2):163-88. doi: 10.2165/00023210-199708020-00010. [Article]
  3. Siu Wa Tang and Daiga Helmeste (2008). Expert opinion on pharmacotherapeutics; Paroxetine. Taylor and Francis online.
  4. GSK monograph, Paxil [Link]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Histamine receptor activity
Specific Function
In peripheral tissues, the H1 subclass of histamine receptors mediates the contraction of smooth muscles, increase in capillary permeability due to contraction of terminal venules, and catecholamin...
Gene Name
HRH1
Uniprot ID
P35367
Uniprot Name
Histamine H1 receptor
Molecular Weight
55783.61 Da
References
  1. Westenberg HG, Sandner C: Tolerability and safety of fluvoxamine and other antidepressants. Int J Clin Pract. 2006 Apr;60(4):482-91. doi: 10.1111/j.1368-5031.2006.00865.x. [Article]
  2. Siu Wa Tang and Daiga Helmeste (2008). Expert opinion on pharmacotherapeutics; Paroxetine. Taylor and Francis online.
  3. GSK monograph, Paxil [Link]
Kind
Protein group
Organism
Humans
Pharmacological action
Unknown
General Function
Serotonin receptor activity
Specific Function
G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various drugs and psychoactive substances. Ligand binding causes a conformation change that triggers...

Components:
References
  1. Siu Wa Tang and Daiga Helmeste (2008). Expert opinion on pharmacotherapeutics; Paroxetine. Taylor and Francis online.
  2. GSK monograph, Paxil [Link]
Kind
Protein group
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Phosphatidylinositol phospholipase c activity
Specific Function
The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the...

Components:
References
  1. Fujishiro J, Imanishi T, Onozawa K, Tsushima M: Comparison of the anticholinergic effects of the serotonergic antidepressants, paroxetine, fluvoxamine and clomipramine. Eur J Pharmacol. 2002 Nov 15;454(2-3):183-8. doi: 10.1016/s0014-2999(02)02557-8. [Article]
  2. Cusack B, Nelson A, Richelson E: Binding of antidepressants to human brain receptors: focus on newer generation compounds. Psychopharmacology (Berl). 1994 May;114(4):559-65. [Article]
  3. Hiemke C: [Paroxetine: pharmacokinetics and pharmacodynamics]. Fortschr Neurol Psychiatr. 1994 Sep;62 Suppl 1:2-8. [Article]
  4. Gray SL, Hanlon JT: Anticholinergic medication use and dementia: latest evidence and clinical implications. Ther Adv Drug Saf. 2016 Oct;7(5):217-224. doi: 10.1177/2042098616658399. Epub 2016 Jul 18. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Agonist
General Function
Serotonin receptor activity
Specific Function
G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various ergot alkaloid derivatives and psychoactive substances. Ligand binding causes a conformation...
Gene Name
HTR2B
Uniprot ID
P41595
Uniprot Name
5-hydroxytryptamine receptor 2B
Molecular Weight
54297.41 Da
References
  1. Peng L, Gu L, Li B, Hertz L: Fluoxetine and all other SSRIs are 5-HT2B Agonists - Importance for their Therapeutic Effects. Curr Neuropharmacol. 2014 Jul;12(4):365-79. doi: 10.2174/1570159X12666140828221720. [Article]
  2. Zhang S, Li B, Lovatt D, Xu J, Song D, Goldman SA, Nedergaard M, Hertz L, Peng L: 5-HT2B receptors are expressed on astrocytes from brain and in culture and are a chronic target for all five conventional 'serotonin-specific reuptake inhibitors'. Neuron Glia Biol. 2010 May;6(2):113-25. doi: 10.1017/S1740925X10000141. Epub 2010 Sep 16. [Article]
  3. Hertz L, Rothman DL, Li B, Peng L: Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift. Front Behav Neurosci. 2015 Feb 20;9:25. doi: 10.3389/fnbeh.2015.00025. eCollection 2015. [Article]
Kind
Protein group
Organism
Humans
Pharmacological action
Unknown
Actions
Other/unknown
General Function
G-protein coupled amine receptor activity
Specific Function
Dopamine receptor whose activity is mediated by G proteins which activate adenylyl cyclase.

Components:
References
  1. Foster RH, Goa KL: Paroxetine : a review of its pharmacology and therapeutic potential in the management of panic disorder. CNS Drugs. 1997 Aug;8(2):163-88. doi: 10.2165/00023210-199708020-00010. [Article]
  2. Kobayashi K, Haneda E, Higuchi M, Suhara T, Suzuki H: Chronic fluoxetine selectively upregulates dopamine D(1)-like receptors in the hippocampus. Neuropsychopharmacology. 2012 May;37(6):1500-8. doi: 10.1038/npp.2011.335. Epub 2012 Jan 25. [Article]

Enzymes

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Steroid hydroxylase activity
Specific Function
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally un...
Gene Name
CYP2B6
Uniprot ID
P20813
Uniprot Name
Cytochrome P450 2B6
Molecular Weight
56277.81 Da
References
  1. Walsky RL, Astuccio AV, Obach RS: Evaluation of 227 drugs for in vitro inhibition of cytochrome P450 2B6. J Clin Pharmacol. 2006 Dec;46(12):1426-38. [Article]
  2. Hesse LM, Venkatakrishnan K, Court MH, von Moltke LL, Duan SX, Shader RI, Greenblatt DJ: CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants. Drug Metab Dispos. 2000 Oct;28(10):1176-83. [Article]
  3. Hoffelt C, Gross T: A review of significant pharmacokinetic drug interactions with antidepressants and their management. Ment Health Clin. 2016 Mar 8;6(1):35-41. doi: 10.9740/mhc.2016.01.035. eCollection 2016 Jan. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
Inhibitor
General Function
Oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen
Specific Function
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally un...
Gene Name
CYP1A2
Uniprot ID
P05177
Uniprot Name
Cytochrome P450 1A2
Molecular Weight
58293.76 Da
References
  1. Begre S, von Bardeleben U, Ladewig D, Jaquet-Rochat S, Cosendai-Savary L, Golay KP, Kosel M, Baumann P, Eap CB: Paroxetine increases steady-state concentrations of (R)-methadone in CYP2D6 extensive but not poor metabolizers. J Clin Psychopharmacol. 2002 Apr;22(2):211-5. [Article]
  2. Lin KM, Tsou HH, Tsai IJ, Hsiao MC, Hsiao CF, Liu CY, Shen WW, Tang HS, Fang CK, Wu CS, Lu SC, Kuo HW, Liu SC, Chan HW, Hsu YT, Tian JN, Liu YL: CYP1A2 genetic polymorphisms are associated with treatment response to the antidepressant paroxetine. Pharmacogenomics. 2010 Nov;11(11):1535-43. doi: 10.2217/pgs.10.128. [Article]
  3. Jornil J, Jensen KG, Larsen F, Linnet K: Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator. Drug Metab Dispos. 2010 Mar;38(3):376-85. doi: 10.1124/dmd.109.030551. Epub 2009 Dec 10. [Article]
  4. Jeppesen U, Gram LF, Vistisen K, Loft S, Poulsen HE, Brosen K: Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol. 1996;51(1):73-8. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Substrate
Inhibitor
Curator comments
Evidence regarding CYP3A4 inhibition by paroxetine is contradictory in the literature.
General Function
Vitamin d3 25-hydroxylase activity
Specific Function
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation react...
Gene Name
CYP3A4
Uniprot ID
P08684
Uniprot Name
Cytochrome P450 3A4
Molecular Weight
57342.67 Da
References
  1. Gerotziafas GT, Mahe I, Elalamy I: New orally active anticoagulant agents for the prevention and treatment of venous thromboembolism in cancer patients. Ther Clin Risk Manag. 2014 Jun 13;10:423-36. doi: 10.2147/TCRM.S49063. eCollection 2014. [Article]
  2. Brosen K: Differences in interactions of SSRIs. Int Clin Psychopharmacol. 1998 Sep;13 Suppl 5:S45-7. doi: 10.1097/00004850-199809005-00009. [Article]
  3. Siu Wa Tang and Daiga Helmeste (2008). Expert opinion on pharmacotherapeutics; Paroxetine. Taylor and Francis online.
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
Steroid hydroxylase activity
Specific Function
Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and im...
Gene Name
CYP2C19
Uniprot ID
P33261
Uniprot Name
Cytochrome P450 2C19
Molecular Weight
55930.545 Da
References
  1. Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1. [Article]
  2. Jornil J, Jensen KG, Larsen F, Linnet K: Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator. Drug Metab Dispos. 2010 Mar;38(3):376-85. doi: 10.1124/dmd.109.030551. Epub 2009 Dec 10. [Article]
  3. Jeppesen U, Gram LF, Vistisen K, Loft S, Poulsen HE, Brosen K: Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol. 1996;51(1):73-8. [Article]
Details
5. Cytochrome P450 2D6
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
Inhibitor
General Function
Steroid hydroxylase activity
Specific Function
Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic...
Gene Name
CYP2D6
Uniprot ID
P10635
Uniprot Name
Cytochrome P450 2D6
Molecular Weight
55768.94 Da
References
  1. Urichuk L, Prior TI, Dursun S, Baker G: Metabolism of atypical antipsychotics: involvement of cytochrome p450 enzymes and relevance for drug-drug interactions. Curr Drug Metab. 2008 Jun;9(5):410-8. [Article]
  2. Baumann P: Pharmacokinetic-pharmacodynamic relationship of the selective serotonin reuptake inhibitors. Clin Pharmacokinet. 1996 Dec;31(6):444-69. [Article]
  3. Ozdemir V, Naranjo CA, Herrmann N, Reed K, Sellers EM, Kalow W: Paroxetine potentiates the central nervous system side effects of perphenazine: contribution of cytochrome P4502D6 inhibition in vivo. Clin Pharmacol Ther. 1997 Sep;62(3):334-47. [Article]
  4. Uttamsingh V, Gallegos R, Liu JF, Harbeson SL, Bridson GW, Cheng C, Wells DS, Graham PB, Zelle R, Tung R: Altering metabolic profiles of drugs by precision deuteration: reducing mechanism-based inhibition of CYP2D6 by paroxetine. J Pharmacol Exp Ther. 2015 Jul;354(1):43-54. doi: 10.1124/jpet.115.223768. Epub 2015 May 5. [Article]
  5. Hicks JK, Bishop JR, Sangkuhl K, Muller DJ, Ji Y, Leckband SG, Leeder JS, Graham RL, Chiulli DL, LLerena A, Skaar TC, Scott SA, Stingl JC, Klein TE, Caudle KE, Gaedigk A: Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin Pharmacol Ther. 2015 Aug;98(2):127-34. doi: 10.1002/cpt.147. Epub 2015 Jun 29. [Article]
  6. Flockhart Table of Drug Interactions [Link]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
Curator comments
This information is based on data from in vitro studies.
General Function
Steroid hydroxylase activity
Specific Function
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally un...
Gene Name
CYP2C9
Uniprot ID
P11712
Uniprot Name
Cytochrome P450 2C9
Molecular Weight
55627.365 Da
References
  1. Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1. [Article]
  2. Schmider J, Greenblatt DJ, von Moltke LL, Karsov D, Shader RI: Inhibition of CYP2C9 by selective serotonin reuptake inhibitors in vitro: studies of phenytoin p-hydroxylation. Br J Clin Pharmacol. 1997 Nov;44(5):495-8. doi: 10.1046/j.1365-2125.1997.00601.x. [Article]
  3. Hemeryck A, De Vriendt C, Belpaire FM: Inhibition of CYP2C9 by selective serotonin reuptake inhibitors: in vitro studies with tolbutamide and (S)-warfarin using human liver microsomes. Eur J Clin Pharmacol. 1999 Feb;54(12):947-51. [Article]

Transporters

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Xenobiotic-transporting atpase activity
Specific Function
Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells.
Gene Name
ABCB1
Uniprot ID
P08183
Uniprot Name
Multidrug resistance protein 1
Molecular Weight
141477.255 Da
References
  1. Weiss J, Dormann SM, Martin-Facklam M, Kerpen CJ, Ketabi-Kiyanvash N, Haefeli WE: Inhibition of P-glycoprotein by newer antidepressants. J Pharmacol Exp Ther. 2003 Apr;305(1):197-204. [Article]
  2. Maines LW, Antonetti DA, Wolpert EB, Smith CD: Evaluation of the role of P-glycoprotein in the uptake of paroxetine, clozapine, phenytoin and carbamazapine by bovine retinal endothelial cells. Neuropharmacology. 2005 Oct;49(5):610-7. doi: 10.1016/j.neuropharm.2005.04.028. [Article]
  3. Ketabi-Kiyanvash N, Weiss J, Haefeli WE, Mikus G: P-glycoprotein modulation by the designer drugs methylenedioxymethamphetamine, methylenedioxyethylamphetamine and paramethoxyamphetamine. Addict Biol. 2003 Dec;8(4):413-8. doi: 10.1080/13556210310001646475. [Article]

Drug created at June 13, 2005 13:24 / Updated at March 19, 2024 11:06